
IFOSR-TR- O? 3

TECHNIQUES FOR
DEDUCTION

Final Report

HI 'October 1981

By: Robert E. Shostak, Senior Computer Scientist
P. Michael Meliar-Smith, Senior Computer Scientist

Richard L. Schwartz, Computer Scientist

Computer Science Laboratory
Computer Science and Technology D'vision

Prepared for:

Air Force Office of Scientific Research

MatthematiC8l and Information Sciences

Department of the Air Force
Boiling Air Force Base

Attention' Capain William Price

SRI Project 8752 k
AFOSR Contract No. F49J620-79-C-

0 0 9 9 "

SRI International
333 Ravenswood Avenue
Menlo Park, Califcrnia 94025

(415) 326-6200
Cable: SRI INTL MPK

TWX: 9i0-373-2046

- *-'~internatonai

UNCLASSIFIED
SECURITY CLASSIFICATION Of To.IS PACGE (When D e Entere.d)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (-nd0Subttle) S. TYPE OF REPORT & PERIOD COVERED

FINAL TECHNICAL REPORT

Techniques for Automatic Deduction July 1979-July 1981
d. PERFORMING ORG. REPORT NUMBEN

7. AUTHOR() 9. CONTRACT OR GRAlT NUMBER(s)

Robert E. Shostak F49620_79-C_0099

P.M. Meliar-Smith
Richard L. Schwartz
J.PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

(Jmputer Science Laboratory AREA & WORK UNIT NUMBERS

SRI International 2304/A2 61102F
333 Ravenswood Avenue, Menlo Park, CA 94025 23....2......

I I. CONTROLLING OFFICE NAME ANO ADDRESS 12. REPORT DATE

Directorate of Mathematical & Information Sciencs October 1981
Air Force Office of Scientific Research 13. NUMBER OF PAGES

Bolling AFB, Washington DC 20332 i01

14. MONITORING AGENCY NAME t ADORF S(Il dilleirent from Controlling Olice) IS. SECURITY CLASS (ol this report)

Unclassified

IS. CECL ASSI FICATION/OWNGRAINGSCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

IF
Approved for public release; distribution unlimited. -

17. DISTRIBUTION STATEMENT (*I the abstract entered In 31Jock 20. It different from Report)

IS. SUPPLEMENTARY NOTES

19. KEY WORD)S (Continue on tevere side it necessary and Identify by block number) -A.

Simplification, verification, theorem proving, deduction, program correctness

20. AUSTRACT (Continue on reverse side It necesary and identity by block number)

This report covers progress on a 2-year research effort toward the development

of new theorem-proving methods for program verification, and the empirical

investigation of these methods in actual verification systems. The research

conducted during the course of the project focused on methods for simplifying

formulas of the kind that arise frequently in the verification of programs.

The importance of simplification methods. as opposed to pure proof methods, wasI

pointed up by verification work conducted under a previous AFOSR contiact I
.Perhaps the most significant outcome of the prolect is the develonment of an I

DD I AN7) 1473 EDITION OF I NOV 81 IS OBSOLETE UNCLASSIFIED Dz
,SECURITY CLASSIFICATION OF THIS PAGE (, .,n Data Entered)

ii- i 7...... ._ .2.. ..tC. -A -- r

UNC LASSI FIED
SECURITY CLASSIFICATION. OF TMIS PAG(Pheu Data Entered)

20.or ti~ani i P

'-3 experimental theorem prover that has been used extensively in the proof of
correctness of the design of a fault-tolerant operating system developed under
NASA support. We believe that the technology embodied in tl--is experimental
system could be successfully applied to the development of a prodtiction

erification system.~

r J#1

I I

UNCLASSIFIED
SECURITY CLASSIFICATION OF yIaS pAGE(When Data Enteered)

WC -MM -1

I-

TECHNIQUES FOR
AUTOMATIC DEDUCTION

Final Report

ror-=

October 1981

By: Robert E. Shostak, Senior Computer Scientist
P. Michael Melliar-Smith, Senior Computer Scientist
Richard L. Schwartz, Computer Scientist

Computer Science Laboratory
Computer Science and Technology Division

r 'Prepared for:

F Air Force Office of Sckmtific Research
Mathematical and Information Sciences
Department of the Air Force
Boiling Air Force Base
Washington, D.C. 20332

Attention: Captain William Price

SRI Project 8752
AFOSR Contract No. F49620-79-C-0099

' 1: -,-, --

V' o

Approved: lw-ylIwuYn J- ; :,io Dk ivj' n

Jack Goldberg, Director
Computer Science Laboratory

David H. Brandin, Vice President and Director A
Computer Science and Technology Division

Table of Contents

I. INTRODUCTION 1
1.1 Relation to Other Computer Science Laboratory Projects 2
1.2 Overview of Results 4
II. SIMPLIFYING INTERPRETED FORMULAS 6
1. Introduction 7
2. The Standard Procedure 9
3. The Modified Procedure 15
4. Complexity Issues 23
5. An Example 25

[6. Phase I Alternative 26
III.AN EXPERIMENTAL PROVER 32

The 10 Model 38
The Replication Model 42
The Lemmas 50
The Proof 0birmands with the required Instantiations 55

IV. SOME COMPLETENESS RESULTS FOR A CLASS OF INEQUALITY
PROVERS 61

1. Introduction 62
2. Definitions and Logical Basis 67
2.1 Axioms for total (linear) order: T 67
2.2 Interpollation Axioms: I 67
2.3 Equality Axioms 70
2.4 Axioms for + 70
2.5 Additional Definitions 71
3. Completeness Results 79
3.1 RCF Completeness 79
3.2 RCF+ Completeness 93
APPENDIX Theorem Prover Listing 96

J,

A

S-...---.. k- -.: -: '

I INTRODUCTION

This is a final report covering progress on a 2-year research effort toward

the development of new theorem-proving methods for program verification, and

the empirical investigation of these methods in actual verification systems. I
In the last several years, interest in verification technology has been

prompted by the tremendous cost of developing, debugging, and maintaining

software. The creation of new software products is frequently characterized

by time and cost overruns, and insufficient modifiability and reliability.

Formal program verification offers a high payoff, though technically difficult

approach to the solution of these problems. Admittedly, methods for proving

the correctness of programs in a mathematical way have not yet been developed

to the point of practicality for widespread everyday use. Nevertheless, much

progress has been made in Just the
last 2 or 3 years, and the use of

these A

techiques for verifying highly critical software now seems both practical and

inevitable.

The experimental verification
system we have developed under

the present

contract, in fact, is now successfully being used in the proof of correctness

of the design of a sophisticated, fault- tolerant operating system developed

under NASA support [Contract No. NAS1-15428]. We believe that the technology

embodied ir this experimental system is now nearly ready for transfer to a

production envirotiment staffed by well-trained (but not neaesa'ily

research-oriented) users. Although more research will be necessary to develop

this system to the point of widespread use, we feel that the feasibility of

verification as a practical technique is finally at hand, and we are currently

seeking new Air Force support for the needed additional work.

The research conducted during the ccurse of the project focused on methods for

simplifying formulas of the kind that arise frequently in the verification of

programs. The importance of simplification methods, as opposed to pure proof

methods, was pointed up by verification work conducted under a previous AFOSR

contract. Much of the effort in the latter years of that contract wa:

directed toward developing fast, automatic deduction mechanisms in a system

for verifiying JOCIT programs (RADC contract F30602-75-C-0042). Although the

work on fast decision procedures enabled
us to prove automatically many of the

verification conditions and fragments of verification conditions generated in

the RADC effort, it by no means facilitated automatic proof of all of the

...-

h.

2

formulas we encountered. The inadequacies were of two kinds: speed and

generality. The first of these difficulties was made manifest by formulas

whose Boolean structuire produced a combinatorial explosion too large to be

handled in a reasonable amount of time. lie second deficiency was made

apparent by large formulas that could be prover neither valid nor

unsatisfiable by the decision procedures. For such formulas (usually

verification conditions arising from improperly formulated inductive

invariants), these procedures leave the user with no clue as to the reason why

the given formula is not valid.

The work in developing simplification methods conducted under the current

project addresses both of these diffloulties. The algorithms embodied in the

experimental system we implemented have been found to deal remarkably well

with the propositional structure that typically arises in verification

conditions. The method for simplifying interpreted formulas that was

developed under the contract has been found quite effective in reducing the

size of formulas whose validity could not be established, thus permitting the

ijser to understand, through examination of the implified formula, where the

problem lies.

Research conducted under the project produced a substantial body of results in

addition to those included in its original goals. Much of this additional In

work focuses on simplification methods based on canonical term rewrite systems

investigated during the first year of the project. Additional work in the

second year includes the investigation of deductive techniques for quantified

formulas over the reals with inequalities.

The next few subsections describe the relation of this work to other Computer

Science Laboratory work, and give an overview of results. Later sections,

most of which are extracted from academic pap.rs, form the main body of the

report.

1.1. Relation to Other Computer Science Laboratory Projeits

The Computer Science Laboratory at SRI has in the last several years conducted

numerous projects involving program verification. The interaction among these

various efforts has been of substantial mutual benefit. The currant effort,

for example, has benefited from the strong motivation for deduction tools

provided by the more application- oriented projects. Conversely, our work in

3 -J

the last 2 years has been, and continues to be, of utility in both our effort

to prove the correctness of the SIFT fault-tolerant operating system, and in a

project for the Rome Air Development Center to develop verifiers for several
versions of the JOVIAL programming language. Other application-oriented

projects have needed (and will need) sophisticated deductive tools for theF]
verification of security properties of system software.

Our work for Rome Air Development center has been in progrdss almost

continuously since 1975. Under contracts F30602-75-C-0042 and

F30602-76-C-0204 ("Rugged Programming Environment", Phasem RPE/1 and RPE/2),

we developed early versions of program verifiers for a subset of JOVIAL/J3 and

for JOCIT. A subsequent contract with RADC (F30602-78-C-0031) called for the

development of a programming environment for JOVIAL-J73/1 in which an Air

Force programmer can design, implement, debug, and prove correctness for

programs in this language. During the current reporting period, several

aspects of the project work have been applied to the development of the Rugged

Jovial Environment (RJE) program verification system. The RJE project is

concerned with the application of program verification techniques to
i i JOVIAL-J73 software. 4

Mutually beneficial relationships have arisen also with several other

government-supported projects in this laboratory. Among these are:

- A Provably Secure Operating System (PSOS): The System, Its j
Applications, and Proofs. (SRI Project 4332, Contra~t
DAAB03-75-C0399, for the U.S. Army. March 24, 1975 to February 11,
1977 plus subsequent work until August D79).

- Kernelized Secure Operating System (KSOS)-D6sign and Verification.
(SRI Project 6654, Contract MDA902-77-C-0333, Subcontract
SC-606079-EW, for Ford Aerospace. August 3, 1977 to April 30, 1978).

- Formal Transformation of Computer Programs. (SRI Project 4079,
Contract N00014-75-C-0816 for the Office of Naval Research. March 3,
1975 to May 31, 1980).

-Formal Methods for Fault Tolerance in Distributed Data Processing
Systems. (SRI Project 7242, Contract DASG60-78-C-0046 for BND ATC.
February 27, 1978 to September 30, 1979).

- Investigation, Development, and Evaluation of Pqrformanoe Proving
for Fault-tolerant Computers. (SRI Project 7821, Contract
NAS1-15528 for NASA-Langley. September 15, 1978 to September 15,
1981).

K.:...".- - - i.... 'i 1

4

- Mechanizing the Mathematics of Computer Program Analysis. (SRI
Project 8527, Grant MCS 79-04081 for the National Science
Foundation. May 15, 1979 to May 15, 1982).

- Development of the Hierarchical Development Model (HDM). (SRI
Project 1015, Contract N00039-79-C-0463 for the Deprtmer, of the
Navy. September 28, 1979 to September 30, 1980).

-OBJ-1, A Study in Executable Algebraic Formal Specification. (SRI
Project 1350, Contraot N00014-80-C-0296 for the Department of the
Navy. August 18, 1980 to August 17, 1981).

- Hierarchical Methodologies for Communication Protocol. (SRI Project
1879, Contract NDONAAC3398 for the National -reau of Standards.
August 21, 1980 to December 31, 1980).

Towards an Editor and Interpreter for System Specificaticns. (SRI

Project 2153, Letter dated 6-25-80 for Philips Research
Laboratories. September 18, 1980 to September 1, 1981).

- PSOS Implementation Study - Consulting Report. (SRI Project 2958,
Contract MDA904-81-C-0422 for U.S. Government. March 12, 1981 to
September 15, 1982).

1.2 Overview of Results

The first year of the project was primarily concerned with Task I of the

proposed work statement, i.e., the investigation of techniques for

simplification of nonlogical expressions. Emphasis was placed on elaborating

the method of interpreted implicants. The investigation was carried out in

collaboration with Professor Donald Loveland, of Duke University. Preliminary

results of this study were presented at the Fifth Conference ona Automated

Deduction held in July, 1980 at Les Arcs, France.

A substantial body of work on canonical term writing systems was also

undertaken during the first year, under partial support of the project.

Participating in this work were a number of visitors to SRI, including Gerard

Huet and Jean-Marie Hullot (of INRIA, France), and Paul Gloess (SRI

International Fellow). Four academic papers were produced, each touching on a

different aspect of the use of rewrite systems to simplify formulas. Three of

r, these papers ("Adding Dynamic Paramodulation to Rewrite Algorithms" (Gloess),

"Canonical Forms and Unification" (Huet and Hullot), and "A Catalog of

Canonical Term Writing Systems" (Hullot)) were presented at the Automated

Deduction conference. "Equations of Rewrite Rules: A Survey" (Huet and Oppen)

appeared in the proceedings of the 1980 Conference on the Foundations of

L..

Computer Science held in Santa Barbara, Ca. Copies of these papers were

included in the first year's report.

The second year of the project included work on all three tasks of the work

statement. Further improvements to tho method of interpreted implicaits were

devised. A complete description of the method, including these improvements,

was issued as a Computer Science Laboratory technical report (CSL-117), and is i

included as Section II of this report. Another facet of the second year's

work was the investigation of means for limited-expansion manipulation of

propositional expressions. Several experimental computer programs were

written in the Interlisp language and used to develop algorithms to minimize

the combinatorial effect of case splitting in dealing with the propositional

structure of formulas. The heuristics developed in this study were then

incorporated within a full-blown experimental theorem prover, which has been

used intensively in a number of verification efforts (listed in the previous

subsection) in which the Computer Science Laboratory is now engaged. A

description of this prover is given in Section III of this report, and the

critical sections of the algorithms themselves, represented in Lisp, are

supplied in an appendix. An extensive example illustrating the use of this

system in the proof of the SIFT operating system has been provided by Michael

Melliar-Smith and Richard L. Schwartz.

In addition to the work specifically called for by the project, the second

year's activities included investigations in the related area of procedures

for deciding formulas involving general equalities. A modified resolution

procedure for this purpose was devised in collabcration with Prof. W. W.

Bledsce and Mr. Robern Neveln, both of the University of Texas. Section IV of

this report describes the procedure in detail and gives completeness results.

,.-.

46

II. Simplifying Interpreted Formus 1 "

D. W. Loveland2and R. E. Shostak3

Abstract

A method is presented for converting a decision procedure for unquantified

formulas in an arbitrary first-order theory to a simplifier for such formulas.

Given a quantifier-free disjunctive normal form (d.n.f.) formula, the method

produces a simplest (according to a Liven oriterion) d.n.f. equivalent from

among a1 formulas with atoms in the original formula, The method is

predicated on techniques for minimizing purely boolean expressions in the

presence of "don't-care" conditions. The don't-cares are used to capture the

semantics of the interpreted literals in the formula to be simplified.

Two procedures are described: a primitive version of the method that advances

the fundamental idea, and a more refined version intended for practical use.

Complexity issues are discussed, as is a nontrivial example illustrating the

utility of the method. The last section describes an alternative to the first

phase of the refined version that is preferable in certain cases.

1An abbreviated version of this paper was presented at the 5th Conference on

Automated Deduction.

2 Dept. of Comp. Sci.. Duke University, Du,-ham, NC 27706

3 Computer Science Lab., SRI International, 333 Ravenswood Menlo Park, CA

94025, (415) 326-6200 x2879; supported in part by AFOSR contract
F49620-79-C-0099.

A7

1. Introduction

The problem of simplifying logical expressions was first addressed in the

early 1950s in the form of boolean minimization. The motivation at that time

was to reduce as much as possible the number of components needed to realize a

given switching circuit. Minimization techniques were developed to operate

according to a variety of criteria, including the fewest literals in a

sum-of-produCts or produrt-of-sUms expression, the fewest terms, or the fewest

terms and occurrences of literals.

The problem of simplifying logical expressions has resurfaced in the last few

years in connection with program verification, synthesis, and allied concerns

in artificial intelligence. In these applications, the expressions to be

simplified are no longer merely propositional; tiley may contain interpreted

predicates or function symbols. Even the problem of defining useful

simplicity criteria for such formulas can be tricky, since the usual syntactic

measures are sometimes misleading. For example, the formula y>x V 5yIx.O

(where x and y are understood to range over positive integers) is much more

concise than the equivalent (x:1 A y=1) V (x:1 A y=2) V (x=2 A yz2)

even though the latter is likely to be more useful in many theorem-proving

situations.

Ideally, one would like a general-purpose method for simplifyind formulas in

arbitrary nonlogical theories with respect to arbitrary simplification

measures. Though such a method is clearly too much to hope for, the approach

described herein is a step in the direction of this goal. Our method may be

viewed as a practical way of converting a decision procedure for unquantified

r8
formulas in an arbitrary first-order theory to a simplifier for such formulas.__

Given a quantifier-free formula in d.n.f., it produces a simplest (according

to any given reasonable criterion) d.n.f. equivalent from among all formulas

one according to which the deletion of a literal from a term or of a term from

a disjunction always produces a simpler formula.

Before describing the approach, we might point out that simplification can

often be accomplished merely by eliminating unsatisfiable disjuncts in a

- .disjunctive normal form. (Note, in particular, that this technique

necessarily reduces all unsatisfiable formulas to "false.") The elimination

of such disjuncts is not, however, sufficient to produce a simplest form for

nonvalid formulas. The difficulty is illustrated by the following formula

from the theory of Presburger arithmetic with function symbols:

F a (y~z) V (x<y A x+y<O) V (x<1 A f(z)if(y)+1)

While none of the disjuncts of F is unsatisfiable, F does have a much simpler

equivalent, namely
ydz V x<1

Isolated consideration of the terms in the d.n.f. expression is thus

insufficient.

OUr method is presented in five parts. Section 2 describes and proves the

correctness of the standard procedure, a primitive version that advances the

fundamental idea. A much more efficient version, called the modified

procedure, is given and justified in Section 3. Section 4 gives a brief

analysis of the computational complexity of the two versions, and Section 5

summarizes a nontrivial example that illustrates the utility of the modified

method. Te last section presents an alternative to the first phase of the

-'

modified procedure that is beneficial in certain cases.

2. The Standard Procedure

The procedure given in this section takes as input a quantifier-free d.n.f.

(c.n.f.) formula in a first-order theory and returns an eluivalent d.n.f.

(c.n.f.) expression with the property that no other such expression with atoms

from the original formula is simpler with respect to a given reasonable (in

the sense given earlier) measure of simplicity. The procedure works with any

first-order theory for which the satisfiability of quantifier-free

conjunctions of literals can be tested.

One can view the method as a nonlogical counterpart of tne systematic

minimization techniques developed for purely proposition formulas. In fact,

the technique makes use of the method of prime implicants first described by

Quine and McCluskey [3,4].

Our treatment assumes that a d.n.f. expression is to be found. One can obtain

c.n.f. expressions using a dual method.

We begin with a brief review of Quine's method of prime implicants for purely

propositional expressions. A more detailed account is given in [1]. !

V Defn. A term is a conjunction of Literals.

P Defn. A term tI subsumes a term t2 if each literal of t2 is also a

literal of tl

Defn. An implicant of a formula F is a term that imiplies F.

Defn. A prime implicant of a formula F is a term that implies F and

subsumes no shorter term that implies F.

The fundamental interest of prime implicants is that. any simplest d.n.f.

L. ..i..... ___ __________

101

equivalent G for a propositional forirla F must be a disjunction of prime

implicants of F. To bee this, suppose that some term t of G is not a prime

implicant of F. Because t implies F but is not a prime implicant, t must

subsume a shorter term t' that also implies F. The expression obtained from G

by replacing t with t' is still equivalent to F, contradicting the assumption

that G is simplest.

Severul methods can be used to determine the set of prime implicants of a

formula F. One such, called the method of iterated consensus [5,6) begins with

the set of terms in a d.n.f. form of F. The nontautological resolvents of

te-ms in the set are repeatedly formed and added to the set. At the same

time, subsuming terms are deleted. When no new terms can be added that do not

subsume existing terms, the set of prime implicants has been obtained.

Consider, for example, the formula F given by

F prs V pqrs V pqrs

Resolving prs and pqrs gives rise to pqr. Because pqrs subsumes pqr, the

former can be deleted. Next, by resolving prs with pqrs, one obtains qrs;

pqrs can thus be deleted. Because no more terms can be added or deleted, the

remaining terms, prs, pqr, and qrs, are the prime implicants of F.

Once the prime implicants of a formula have been found, a simplest d.n.f.

expression can be obtained by determining a simplest subset of prime

implicants whose disjunction is implied by the formula. Note that simplest

disjunctions need not be unique; frequently several different combinations of

prime implicants give rise to simplest equivalents. To discover these

combinations, it is useful to classify the prime implicants into three

: ll

catagories:

- Core implicants are those that must appear in any such combination.

If a given implicant does not imply the disjunction of all other
implicants, it must be a member of the core.

- Absolutely eliminable impl'.cants are those that imply the

disjunction of the core implicants, and so can be ignored.

- Eliminable implicants are those that are neither core nor absolutely

el iminable A

The various simplest equivalents differ only in their selection of eliminable

implicants. 1

The most straightforward method of finding these equivalents involves

constructing a table T whose rows are labeled by prime implicants and whose

columns are labeled by the terms in the perfectly developed d.n.f. (In the

perfectly developed d.n.f., each letter atom occurs (either signed or

unsigned) in each term of the formula to be simplified.) A 'I' is placed at

T(t,u) if the prime implicant t is subsumed by term u, and a '0' otherwise.

The core implicants are easily identified as those subsumed by at least one

term that subsumes no other implicant; absolutely eliminable implicants are

those subsumed only by terms that subsume at lea3t one core implicant. All

rows labeled by core and absolutely eliminable implicants are then canceled

(deleted from the table), as well as all columns labeled by terms that subsume

core implicants, The subsets of remaining implicants sifficient to cover the

reraining columns are then enumerated exhaustively and a simplest one is

selected.

Our procedure for simplifying interpreted expressions depends on an

Li---

12

elaboration of the method just described that can handle so-called

"don't-care" conditions. In the application of minimization techniques to

digital design it is sometimes useful to exploit situations in which certain

assignments to the variables of an expression to be simplified are not

actually realized. For such assignments, the value of the simplified

expression can be arbitrary. As one might expect, greater simplification can

often be obtained if one relaxes rne requirement that the simplified

expression be equivalent to the original, so as to necessitate equivalence

only for assignments other than the don't-cares.
I-

The treatment of don't-care conditions requires two slight modifications ofI-
the basic method. First, for purposes of generating prime implicants, the

d.n.f. form of the formula to be simplified is augmented by disjoining to tt a

term for each don't-care condition. If, for example, p=T, q=F, r=T is a

p don't-care input, the term pqr is added. Second, the terms in the perfectly

developed d.n.f. that imply don't-care conditions are omitted from the

prime-implicant matrix.

Suppose it is wished, for example, to simplify the formula F 3 p V qr with

respect to don't-care conditions {p=F, q=T, r=Fj and {p=T, q=F, r=T). We

first find the prime implicants of the augmented formula

p V qr V pqr V pqr. Using the method of iterated consensus. pqr can be

eliminated imediately because it is subsues p. Resolving p against pqr, qr

is obtained. Since pqr subsumes qr, pqr can now be eliminated. Resolving qr

against qr yields q, which permits the elimination of both qr and qr. We are

therefore left with the prime implicants p and q. The prime implicant table

will contain rows for p and q and columns for all the terms in the

,-A .

13

perfectly-developed d.n.f. for F (namely, pqr, pqr, pqr, pqr, pqr) other than

the don't-care term pqr. It is easy to verify that both p and q are core

implicants (q is subsumed by pqr and p by the remaining terms), hence the

simplified form is Just p V q.

Our application of this method to the problem of simplifying interpreted

expressions is predicated on the use of don't-care conditions to encode the

semantics of the terms appearing in the expressions. The basic idea is to

treat the interpreted formula to be simplified as if it were purely

propositional (i.e., as if interpreted terms were actually uninterpreted),

except that all unsatisfiable (with respect to the interpreted semantics)

conjunctions of literals with atoms occurring in the formula are tre.ted as

don't-cares. I
The procedure is easily understood in the context of a small example.

Suppose, then, that the formula F to be simplified is just

x<y V (z>O A x+2z-Y>3)

where all variables range over nonnegative integers.

* If we let p, q, r denote the atoms x<Y, z>O, and x+2z-y>3, respectively, F can

be written p V qr.

Now consider the eight possible assignments of truth values to p, q, r: pqr,

pqr, pqr,..., pqr. If each term were submitted to a refutation procedure for

quantifier-free Presburger arithmetic, it would be found that all assignments

other than pqr and pqr are satisfiable. The question of simplifying F thus

becomes that of finding the simplest propositional equivalent of p V qr

subject to the don't-care conditions pqr and pqr. Having solved this problem

AiI

14

in the propositional example above, we may conclude that p V a, i.e., x<y V

z>O, Is a simplest equivalent. (Note, incidentally, that since p and q are

core .mplicants, the fact that p V q is simplest does not depend on the

simp tQ'ty measure.)

The standard method may be summarized as follows:

1. Let A be the set of atoms occurring in the formula F to be
simplified, and let T be the set of terms representing the 2 IAI

truth assigrnents to A. Using a refutation procedure for the theory
in question, determine the unsatisfiable subset U of T.

2. Using the method of prime implicants, find a simplest (with respect
to the desired reasonable measure) formula that is
truth-functionally equivalent to F modulo the don't-care set U. -

Our proof that the standard method does indeed produce a simplest semantic

equivalent for F among all formulas with atoms in A requires a few

t definitions.

In the following, we will assume that F and F' are both q'antifier-free

formulas in a first-order theory Th, that as before, A is the 3et of atoms

occurring in F, and that the atoms of F' are contained in A.

L Defn. If S is a set of truth assignments to A, we say that F and F'

[are truth-functionally equivalent with respect to S if F a F'

evaluates to true for each truth assignment in S.

Defn. The full term of a truth assignment m to A is a conjunction of
literals, one for each atom in A, such that each atom true in

m occurs positively, and each atom that is false in m occurs

negativel y.

Defn. A truth-assignment to A is semantically consistent if the

corresponding full term is satisfiable in Th.

[Claim. F and F', are equivalent in Th iff they are truth-functionally

equivalent with respect to the set of semantically consistent

-...-

truth assignments to A.

Pf. Z> Suppose F and F' are equivalent in Th. Let m be any
semantically consistent truth assignment. Since m is
semantically consistent, its corresponding full term is true

in some model I of Th. Since each literal of F a F' is

assigned the same value by I as It is by m, F a F' must have

the same value in I as it does in m. Since F a F' is valid in

Th, it is true in I, hence in m. I
<= Suppose F and F' are not equivalent in Th. Then F i F' must

be false in some model I of Th. Let m be the truth assignment

that gives each atom of A the value given it by I. I satisfies

the full term corresponding to m, so m is semantically

consistent. Since m gives each atom of A the same value as I,

F a F' is false iii m, hence F and F' are not

truth-functionally equivalent with respect to the set of

consistent truth assignments of A.

Q.E.D.

It follows as a corol' xy ' he claim that among all quantifier-free formulas

of Th with atoms in A, a simplest equivalent to F, according to any measure,

must be a simplest truth-functional equivalent to F with respect to the set of

semantically consistent truth assignments to A. The -orrectness of the

standard procedure follows immediately, once it is observed that (i) the

don't-care procedure finds a simplest truth-functional equivalent with respect

to the complement (in the spare of all assignments to A) of the given

don't-care set, and (ii) the complement of the don't-care set, in the standard

procedure, is the set of semantically consistent tr'.th assignments.

3. The Modified Procedure

Because the problem solved embeds the satisfiability question for

propositional formulas, any version of the procedure requires (at least)

L-r .-,"' x.. ... -" :' "; .,----

16

exponential time in input formula length in the worst case (based on

present-day know'edge) . This section details refinements of the standard

procedure, however, that improve performance greatly in many situations. The

standard procedure may nevertheless be preferable when there is a substantial

number of multiple occurrences of atoms of F.

Our measure of effort will be taken as the number of calls to the refutation

procedure. That this is the best measure is arguable since some refutation

procedures can be so quick as to have the boolean manipulation dominate the

cost. However, our methods are independent of the refutation procedure used

and most such pocedures require a significant interval of time per call

(which may be only a second, but is nevertheless significant when hundreds of

calls are made). Moreover, except for the iterated consensus (resolution)

section, total effort is proportional to the number of calls.

The greatest potential for performance gain follows from the requirement of

the standard procedure that all conjunctions to be processed must be evaluated

by the refutation procedure before serious boolean processing begins.

Although we improve the "worst-case" situation somewhat (worst-case with

respect to the various chances that simplification may occur), we greatly

improve the cost cf processing a typical formula, especially when no

simplification does occur. We are left at least with the situation that high

cost is associated with definite gain.

For purposes of explanation, it is convaient to consider the standard

procedure as consisting of two phases: in Phase 1, the unsatisfiable truth

assignments are determined and the prime implicants of the formula augmented

+I
J4

17

by don't-care terms are generated; in Phase 2, the prime-implicarr table is"

created and a simplest set of implicanta implied by the original formula is

chosen. The improved procedure refines both of these phases.

The main improvemernt to Phase I turns upon the observation that it is

unnecessary to test all truth assignments for satisfiability, In particular,

the assignments that subsume terms of the original formula need not be tested,

since these assignments would be discarded in the iterated consensus procedure

anyway. In our earlier example, for instance, five of the eight assignments

(namely pqr, pqr, pqr, pqr, and pqr) subsume either p or qr, leaving only

three (pqr, pqr, pqr) to be submitted to the refutation procedure.

Described in Section 5 is ancther refinement of Phase 1 that further lowers

the required number of calls to the procedure, but at the cost Of ossibly

missing significant simplifications.

The improvec Phase 2 procedure is equivalent to the standard one, but is

substantia.ly more effictent in most cases. it appears not to have been

considered for boolean minimization because "don't-care" conditions are

traditionally given rather than computed.

The procedure is defined using an auxiliary predicate P(X,Y), where X and Y

are sets of terms. Loa.ting Y{tl,t2 ...tk}, P(XY) is computed by enumerating

all termi of the form

CALL AL,... ALk

where C is the conjunction of all terms in X and each Li is the complement of

some literal in t.. The enunerated terms are tested one by one for

satisfiability. P returns "true" if one is found to be satisfiable, and

returns "false" otherwise. The Key property of P is that P(X,Y)false ifr

C D tI V t2 V .. Vt k

If for example, Xa(a,bc) and Y:{cde,gh}, the terms abcog, abcch, abcdg, abcdh,

aboeg, abceh are enumerated. Note that the first two of these are

syntactically unsatisfiable, and so do not require calls to the refutation

procedure. If it were found, for instance, that abcdg is satisfiable, the

evaluation could terminate after this one call, returning "true."

The improved Phase 2 procedure is as follows. Let I be the s- of prime
implicants computed by Phase 1, and let I' be obtained by deleting from I all

of its unsatisfiable members. (Computing I' from I thus requires applying the

refutatian procedure to each member.) A modified prime-implicant table Tm is

now constructed whose rows are labeled with members of I' and whose columns

are labeled by sets of terms. The columns are created dynamically in the

following way:

1. Initialize the table by creating a column for each term in I', with

the singleton set of that term as label.

2. Fill in each new column as follows. If P(X,I'-X) evaluates to

false, where X is the set labeling the column to be filled in,

enter ', in each row position (indicating a cancelled column). ,

Otherwise, for the row labeled by implicant u, enter 'I' if u 6 X

and '0' if u o X.

3. For each two cancelled columns with labels X1 1 X2 , create a new

column, if one Joes not already exist, labeled by XI U X2.

4. Repeat Steps (2) and (3) until no new columns can be added.

5. Select prime implicants to define a simplest equivalent to F as ill

the standard procedure-i.e., choose a simplest set S of prime

implicants such that for every uncancelled column X, there exists

.....

19

en s G S such that Tm(SX)rl.

We illustrate the modified procedure with the earlier example:

F a V be V de

where

a: yoz
b: x<y
c: x*y<O
d: x<-

Phase 1.

The truth assigments not subsuming terms in F are abode, abode, abode, abode,

abode, abode, abode, abode, and abode. Of these nine, all but abode, abode,

and abode are found by a refutation procedure to be unsatisfiable. The

iterated-consensus process is applied to v- augmented by the six "don't-cares" i
to obtain the set I (a, be, d, e) of prime implicants.

Phase 2.
-I

Each member of is tested and found satisfiable, so I' I. The modified

table Tm is initialized with rows and columns labeled by members of I'. Steps

(2) and (3) of the Phase 2 procedure are now applied repeatedly to form the

table shown below.

20

I:

a * 0*

bc 0* 0 *

d0 * 1 * ,
d 0*

0* 0 *

i

Justification for the table is summarized below:1. Initialize, creating columns labeled (a), (bc), [d), e}

2. Fill in columns:

I i Col umn{ 8)

P({a}, (be, d, e):
conjunction tested: abde satisfiable

true

Fill in standard way

Col umn{ bc)

P({be), (a, d, e})

conjunction tested: bcade unsatisfiable

false

cancel column I
JA

L
,-

iii

Col Umnd)

P(td), (a, be, e}):
conjunction tested: dabe satisfiable

Strue

Fill in standard way

Column to):

PM), to, be, d))

conjunctions tested: eabd unsatisfiable

eacd unsatisfiable

[false

cancel col umn

3. Create new column labeled (be,e)

2. (Repeated). Fill in new columns:

Columnn (be, e)
P({bc, e;}, (a, d))

conjunction tested: bcead unsatisfiable

false

cancel column J

k 3. (Repeated). No new columns

5. Core implicants a,d cover all uncanceled columns.

The simplified form is thus a V d, i.e., F a yiz V xal.

(Note that here only 19 calls to the refutation procedure were required, as

against 32 for the standard procedure.)

The correctness of the modified phase 2 procedure is established by the
uA

following theorem.

Theorem The standard and modified procedures yield the same minimal

formulae. AAi

. .I

22

F Because don't-care terms cannot label columns of tUe table

created in the standard procedure, any row of that table

headed by an unsatisfiable implicant must contain only zeroes,

and so cannot participate in an implicant selection. Letting

T. denote the table obtained by omitting such rows, it thus

suffices to show that T. and Tm (the table generated in the

modified procedure) yield the same implicant selections.

Note that the rows of both Ts and Tm are labeled with the

members of the satisfiable subset I' of implicants generated

in phase 1. We will assume without loss of generality thatI' iithese implicants are assigned to rows in the same order for I,

the two tables.

Let T. be the table obtained from T. by removing any column v

for which there is another column v' with fewer 1's and such

that v has a 1 in every row position that vt does. We claim

that it is enough to show that V(T Q M). and

V(Tm) C V(.) , where V() denotes the set of uncanceled column

vectors of table T. To see this, note that a prime implicant

selection need only meet the condition that every uncancelled

column vector have a 1 in some row labeled by a selected

implicant. Any implicant selection that satisfies this

condition for T must, from V(Ts*) S V(Tm), satisfy it for* m

Ts ,and hence for Ts . Conversely, any selection that

satisfies the condition for Ts must, from V(Tm) S V(Ts) , ,
satisfy it for Tm.

To show that V(Tm) G V(Ts), let v be an arbitrary column

vectc, in V(Tm) and suppose v occurs in Tm with label X. Let t

be the conjun*.ion of terms in X. Since P(X,I'-X) is true,

there exists a satisfiable conjunction C subsuming t with the
I complement of (at least) one literal from each term in I'-X.

Let AI,...,Ak be the atoms of F missing from C. The

conjunction C A (A1 V A1) \ (A2 V A2) A ... A (Ak V Ak)

is satisfiable, so at least one term u in its disjunctive

expansion must be satisfiable. Because u is a full term that

..................... "...... ':'"...... -'''
..................,.,. .

23

subsumes a conjunction of implicants of F, u must occur in the

perfectly-developed d.n.f. of F. The vector labeled by u in

T., moreover, must be v, giving v.G V(Ts) as required.

For V(Ts. -S V(Tm), let v be a column vector in V(Ts*) and

suppose v occurs in T. with label t. Let X be the set of

implicants in I' that are subsumed by t. Because t is a full

term, each implicant of I' not in X must have a literal whose

complement occurs in t. Let C be the conjunction of all

literals in X, and for each implicant s not in X, at least one

literal of t whose complement occurs in s. C must be A

satisfiable because t is. Since C is a conjunction tested by

P(X, I' - X), P(X, I' - X) must therefore be true. Thus if X A

labels a column in Tm that column must be uncancelled, hence

v a column vector.

It suffices to show, then, that X does indeed label a column

of Tm. So suppose not. Then there exists a proper subset Y

of X that labels an uncancelled column of Tm with 1's in only

some of the rows in which v has 1's. Since V(Tm)!- V(Ts) ,
this vector also occurs in Ts. But then v could not occur in

T ,giving a contradiction.

F Q.E.D.

4. Complexity Issues

While it is difficult to obtain quantitative measures of the improvement

afforded by the modified procedure, some calculations can be made under..

certain simplifying assumptions. Our analysis will consider that the formula

F to be simplified has n terms, each with m literals, and that no atoms in F

have multiple occurrences.

For the standard procedure, exactly 2mn calls to the refutation procedure are

made in Phase 1 and, of course, none are made in Phase 2.

24

For the modified procedure, calls are made in both phases. In Phase 1, a call

is made for each truth assignment (to the mn atoms of F) that does not subsume

a term of F. Each truth assignment may be viewed as a choice. for each term,

of one of 2m assignments to the atoms of that term. Because all but one of

these 2m assignments are permissible, a total of (2 m- 1)n calls is made in

Phase 1.

The number of calls made in Phase 2 depends on the set I of prime implicants

discovered in the first phase. To obtain a rough idea of Phase 2 behavior,

let us assume I contains p implicants, each with q literals, and that p<n,

q<m. (We have found this assumption to be valid in practice.)

Phase 2 first requires that each of the p implicants be tested for

satisfiability. The remainder of Phase 2 may require zero calls (if all prime

implicants are unsatisfiable). Assuming that p prime implicants are

satisfiable, we may need as few as p more calls (if all tested conjunctions

are satisfiable) or as many as (q+1)P-1 more calls (if all tested conjunctions

are unsatisfiable). The lower bound holds because for each singleton set X,

P(X,I'-X) will return "true" after one call and Step 3 provides no new columns

beyond the p initial columns. Thus, a total of p calls is made. The upper

bound holds because each conjunction tested contains for each of the p prime

implicants either the prime implicant itself or the complement of one of the q

literals of the implicant. In the one unrealizable case, no prime implicant

occurs-in the conjunction. Using p<n, q<m, we have a worst-case bound of

(m+l)n-1, and a best-case bound of 2n.

It is worth noting that the total worst-case cost for the modified procedure

t~

-' :... :.:'. --;.'"," ,*°:"' -r"; '-"°i " :" ' ' .'.... "; '

25

is almost always less than that for the standard procedure ((2m-l)n+n+(m+)n_.1

versus 2ran) for reasonable m and n. However, the primary value of the modified

procedure is that often m is small enough (typically averaging about 1.5) so

that Phase 1 cost is moderate. Moreover, a general mix of candidate formulas

includes many that are not simplifiable and with the cost of Phase 2 close to

2n.

5. An Example

This section gives a summary of a less trivial example. The example

Pillustrates that quite striking reductions can be obtained in innocent-looking

formulas.

Consider
F a y>max(2,z) V y>1 z V (yiO A y<-1)

V (yW0 A y~z) V y-O V (zW1 A yi1)

Phase 1: Use of modified procedure requires 3 calls, and results
in prime-implicant set:

{ypmax(a,z), y>l z, y--0, y<-1, yiz, W , y 1}

Phase 2: Modified procedure requires 63 calls.

Result: F a z41 V y1

The standard procedure requires 128 calls.

To balance this example, we consider two formulas with similar structure to F,

but where little simplification occurs. The letters A, B, ... represent

semantically unrelated atoms.

F1 a A V B V (C A D) V (C A E) V C V (G A H)

(which simplif.es to F1 a A V B V D V E V C V (G A H))

.. . . - - -

26

F2 a A V B V ,C A)D V (W A E) V Z V (G A H)

F, produces 3 Phase 1 calls and 12 Phase 2 calls. F2 produces 27 phase 1

calls and 12 Phase 2 calls, The standard procedure requires 128 and 512 calls

respectively.

6. Phase 1 Alternative

We conclude with a description of an alternative phase 1 procedure. :-e need

for improvement relative to the procedures desci ibed earlier is strcag when

there are numerous multiliteral terms. Although the worst-case cost is little

improved, we again are able to reduce costs when few conjunctions of literals

of the given formula F are unsatisfiable.

The reduction is obtained at the tradeoff of the guarantee of finding all

prime implicants -- the alternative procedure detects only prime implicants

that are subterms of terms of F. This tradeoff is more favorable than it might

at first sem, since proper subterm implicants have the advantage of

guaranteeing simIification. Moreover, nonsubterm conjunctions of literals

with atoms in F are more rarely prime implicants, and are especially less

likely to appear in the final simplified formula. A nonsubtenn implicant must

be implied by some other implicant in order to appear in the final

simplification. This rather strong constraint is automatically satisfied by
rJ

subterm impl icants.

The alternative procedure is carried out 'n two stages. First, iterated

consensus is applied to F as before, but without first computing and adding in

don't-care terms. Terms in the resulting 'set of implicants that are not

LI

27

subterms of terms in F are discarded. (Alternatively, but nit necessarily

equivalently, one could modify iterated consensus to disallow resolvents other

than subterms of terms in F. This would tend to reduce the cost of the first

stage at the expense of the second stage, and might be preferable in certain

instances.)

In the second stage, each subterm implicant is tested for primeness. An

implicant t is tested by detemining, in a manner described momentarily,

whether it has a subterm (i.e., a subterm with one fewer literal) that is also

an implicant. If not, t is prime, and so is included in the output of phase

1. Otherwise, t .s discarded in favor of its subterm implicants, which are

themselves tested for primeness. Proceeding depth-first, one has the option

of discontinuing subterm checking if a desirable subterm implicant (such as a

unit) is determined.

The key aspect of the alternative procedure is the use of the P predicate

described earlier to determine quickly whether a given subterm of a subterm

implicant t is also an implicant. Letting 1 1,1 2... 1 k denote the literals of

t, and 1 1,1 2... 1 k_ the literals of the :ubterm in question, the determination

is made by computing P({1 1,
1 2,'.k I , 01k, F - (u}), where F is the set of

terms of F and u is the term of F (or one of possibly several) of whicN t is a

subterm. As we will show P computes to false if and only if the subterm is an

implicant.

For illustration, consider the earlier example formula F a a V bc V d-,.

where

a: y z
b: x < y
c: x+y<O
d: x <1
e: fzi fy+ 1

I

28

In this example, the iterated consensus stage has no effect, leaving the terms

of F as the set of implicants to be tested. The unit literal a has no

subterris and so is prime. It remains to test be and de:

eP(b, la,de}):

conjunction tested: bcad satisfiable

- true

P(bc, (a, de)):

conjunction tested: bead satisfiable

true

,: be is prime

P(de, (a, be)):

conjunctions tested: deab unsatisfiable

deac unsatisfiable

: false

P(de, (a, be)):

conjunction tested: deab satisfiable

true

.'. d is a prime implicant, de and e are not.

We have, then, that a, be, and d are prime implicants. The implicant q. is not

. found; however, e does not appear in the final simplified formula, which is

a V d. Note that five calls to the refutation procedure are made, as compared

with nine calls by the modified procedure.

The use of the P predicate is justified in the following lemma.-

Lemma Suppose u = 1 112-. 1 k is a term of F and t = 1 11 2-.r , 2 < r

< k, is an implicant of F. Then 1 1 A .. _I is also an
i_ F

implicant of F iff PIl 12*l 1~ F [u)) false.

29

P. > if P((lil 2 *..r- lr I F - (u)) is true, then there is a

satisfiable conjunction 1 1 .'Ir- 1lru()."'lu(i)" lu(n),

where lu(i) is a literal in term u(i) of F, with term u

omitted from the indexing. But since 1 r is a literal of u,
every term of F is falsified so 1 I A 12 A ?A _ F does

not hold, contrary to assumption.

<2 If 1 I A ... A Ir_1 is not an implicant, there is an

interpretation of F verifying l ',..,r1 but falsifying at

least one literal lu(i of each term u(i) of F. But since t is
an implicant, so that i A ... A 1r-F, Ir must be falsified

in this interpretation. But then 1 1'rr 1 t(1)'.lt(n)

satisfiable, contradicting P({ll 1 2...1 r01lr), F - (u)) ill
fase.

Q.E.D.

To obtain some general measure of the improvement afforded by the alternative

phase 1, we again count calls to the refutation decision procedure, and

consider formulas with n terms of m literals each, with every atom having a

unique occurrence in F.

Y'A'hen all conjunctions are satisfiable only one conjunction is tested for each

of the m subterms for a cost of nm. If all conjunctions are unsatisfiable up

to 2m-2 subterms can be tested for each term, each checking mn- 1 conjunctions

for a total of n(2m-2)mn
- 1 calls, (although in this case a depth-first search

would hold the cost to mn.) A more useful observation is that finding one new

subterm prime implicant costs mn - 1 calls.

[We emphasize again that while gains over the modified phase 1 method can be

appreciable when a number of multiliteral terms exist and little

simplification occurs, this must be weighed against the possibility of missed

prime implicants of value. The alternative procedure also has less value when

o J

A. " i(m " lly '

30

many multiple occur-ences of literals are found in the given formula. To

expedite this case, each conjunction should be checked for complementary

literals before submission to the decision procedure.

It should be clear that the procedure we have described is but one of a number

of alternatives. For large formulas one may check only small subterms (using

P(t 1 , F) rather than P(tI, F . [u)), where tI is a subterm of t, when

necessary). If one wishes to consider all subterms with complementation of

literals introduced(so that e would be found as a prime implicant in our

example) then testing should be on conjunctions t I each of which contains all

li arals of the term t or their compliments. Resolution is then employed on

the conjunctions seen to be implicants. The worst-case cost of n(2m-l)mn-l is

only slightly worse than for subterm testing alone, but often all 2m-1

patterns need be tested. (However, many P(t,F - [t)) may test as few as one

conjunction.)

A
Truly low-cost maximal simplification using refutation decision procedures is

unlikely. However, we believe this paper shows that, given the speed of the

best existing refutation procedures, simplification of expressions that occur

in practice is currently feasible.

7. REFERENCES

1. Bartee, T. C., Lebow, J. L., Reed, I. S., Theory and Design of
Digital Machines, McGraw-Hill, New York (1962).

2. McCluskey, E. J., "Minimization of Boolean Functions," Bell System
Tech. Journal, Vol. 35, pp. 1417-1444 (Nov. 1956).

3. Quine, W. V., "The Problem of Simplifying Truth Functions," Am.
F: Math. Monthly, Vol. 59, pp. 521-531 (Oct. 1952).

IA

31

4. Quine, W. V. ,"On Cores and Prime bnplicants of Truth Functions,"
Am. Math. Monthly, Vol. 66, pp. 755-760 (Nov. 1959).

5. Samson, E. W. and Millb, B. E., "Circuit Minimization: Algebra and
Algorithm for New Boolean Canonical Expressions," AFCRC-TR-56-l10,
Cambridge, MAssachusetts (1954).

32

III AN EXPERIMENTAL PROVER

In the second year, much effort was devoted to the development of an

experimental theorem prover with the purpose of testing and refining the

theoretical results of the project in a practical setting. The resulting

verification system has been used and continues to be used extensively in a

NASA-supported effort to verify the correctness of a complex fault- tolerant

operating system. Participants In this effort include D. Hare, Dr. K. Levitt,

P. M. Melliar-Smith, and Dr. R. Schwartz, all of whom have been instrumental

in the development of the prover. The use of the system for this effort has

been so successful that we are currently seeking support for the further

research and development needed to create a production version.

The system consists of a decision algorithm-based theorem-prover for typed

predicate calculus, together with a set of environment support functions.

Formulas in the typed theory are constructed from:

- Integer, real, rational and user-defined constants

- Integer, real, rational and user-defined variables

- The propositional connectives IMPLIES, NOT, AND, OR, IFF

- The first-order connectives FORALL, EXISTS

- The three-placed IF construction

- The relational operators EQUAL, LESSP, LESSEQP, GREATERP, GREATEREQP

- The arithmstic operators PLUS, TIMES, MINUS, DIFFERENCE

- Uninterpreted function symbols of INTEGER. RATIONAL, and
user-defined types

The theory also includes a definitional facility that permits user-created

conservative extensions.

One of the more interesting (and powerful) aspects of the theory over which

the prover operates is the provision for user-defined types. This facility

permits the abstract data type information associated with a program that is
to be verified to be carried down to the level of the verification conditions.

This information is passed to the theorem prover through explicit type

declarations for variables and function symbols occuring in the formulas to be

proved. The proof process includes a typechecking phase that verifies the

syntactic correctness of the formula. Type information is extracted during

: "+ -. : +: +. +.... -:............. _ '
" + -++ +

+- ++.+ .- . :. - .. , .. . _ - , -,++ +,, ., -.+ --+.:+ . ,,.- . +-. ',. ,.+- - .,, - + - + - +.+. ,:

33

this phase, and incorporated into a TYPE MODULE that the theorem prover proper

subsequently consults during the proof process.

It should be noted that while the language we have described is first-order

(i.e., includes quantifiers), the decision procedures that underly the prover

operated exclusively on ground (unquantified) formulas. The prover

automatically skolemiZes a quantified formula to obtain a ground formula, and

relies on the user to provide the necessary instantiations of the quantified

variables in the resulting Skolem form.

The prover has been found to be able to prove remarkably complex (with respect

to syntactic measures) verification conditions on the order of several

seconds. The fast response is due in large part to a considerable amount of

experimentation with the mechanism used to process the propositional

super-structure of the formula to be proved.

Perhaps the main lesson learned from this experimentation was that vast
changes in speed performance could result from apparently minor "fine tuning"
of this mechanism. Because the modifications to which performance was

sensitive were often extremely slight, it is difficult to draw conclusions

about how one should go about treating propositional structure in general.

Nevertheless, a number of ideas were developed that are of general interest.

First, it was determined that success in handling propositional structure

depends on a delicate balance between simplification and proof. "Proof",

here, refers to an attempt to reduce a formula or subformula to either "true"

or "false"; failure of the attempt produces no other information.

Simplification, on the other hand, may result in reducing a formula that can

be proved neither true nor false to an equivalent formula that is at least

syntactically more tractable. The utility of simplification as a subprocess

of proof is well established; it proved to be especially so in our case,

because it often obviated the case-splitting that is more often than not

responsible for combinatorial explosion in the reduction of propositional

structure. As an illustration, consider the following propositional

expression E:
E (AND P (OR (NOT P)(NOT Q))(OR Q (AND (NOT P)(NOT Q)) R)

(OR (NOT P) Q (NOT R)))

We wish to reduce E to TRUE or FALSE. Ordinary case splitting, even when

preceded by recursive reduction of subexpressions to TRUE or FALSE when

34

possible, produces 1 x 2 x 3 x 3 a 18 cans (conjunct*) in the disjunctive

normal form. By recursively simplifying, however, 9 can be treated without

any case-splitting at all. In particular, simplification of the disjunct (OR

(NOT P)(NOT Q)) in the context of the unit literal P produces a second unit

literal (NOT Q). Simplification of the next disjunct in the context of the

two unit literals P and (NOT Q) produces a third unit literal

t. Simplification of the last disjunct then produces a contradiction, thus

reducing E to false.

Unfortunately, simplification is much more time consuming than proof, because,

as illustrated in our example, the results of each simplification must be
repeatedly applied to obtain other simplifications. e found that just the

right balance had to be struck between simplification and proof in the

internal structure of the propositional reduction mechanism to obtain the

benefits of simplification without paying too dearly for the additional

analysis it requires. j
A second idea developed from our experimentation is the utility of the

"FAST.PROVE" strategy. FAST.PROVE is a subalgorithm of our propositional

manipulator that attempts to reduce a formula (or subformula) without

permitting any case-splitting at all. Although FAST.PROVE is, of course,

incomplete, it was found to be quite effective as a kind of preprocessor; a

given formula would be subjected to FAST.PROVE at each level of its tree
structure before any case splitting would be undertaken at all. Once again,

it was discovered that a delicate balance had to be maintained in order not to

waste too much time in the case where the FAST.PROVE component was not

successful. As in the case of simplification, the criticality of this balance

is due to the recursive structure of the prover as a whole, which greatly

magnifies the effect, for better or worse, of any computation that is carried

out at each level of the recursion.

The remainder of this section illustrates the operation of the theorem prover

on some oxamples. The first series of examples involve simple mathematical

identities, and are included to exemplify operation of the prover. The second

series is extracted from the design proof of the SIFT operating system, and

was kindly furnished by Melliar-Smith and Schwartz. A partial listing of the

propositional simplifier portion of the prover is supplied in an appendix for

the benefit of those interested in the details of its operation. In the

L ..-.... _ _.-_ __-.-_:... J
-, ' . -

- :

35

following, annotations in braokets art not part of the user-mchine dialogue,

but were inserted after the fact for the purposes of explanation. Lines
heeded by numbers show commands issued by the user.[2 DSV(UMBER X)

3DPSV(NUMBKR Y)

II DSV(NUMBER Z)

EIn the three DSV (Dealare Symbol Variable) commands above, the user declares,
X, Y, and Z to be numbers (i.e., reals)]

5 DD(NUMBER MAXCI Y)(IF (LESSP X Y) Y X))

[This Declare Definition command deines the function MAX that takes twoA
numbers as arguments and returns a number. Note that the IF construct thatA
provides the definition defines MAX in the usual way.]

6 DF(MAX.COMMUTE (EQUAL (MAX X Y)(MAX Y X)))

[This Declare Formula command associates the name MAX.COMMUTE with the given

formula. The system typechecks the formula, and would issue an error message

if it were found to be ill-formed.]
7 PR(MAXCOMMUTE)

------ Prov ing------
602 conses
.7 seconds
Proved

(The user now invokes the prover on the formula MAX.CONMUTE. After .7 CPU
seconds, the prover returns Proved, and indicates the number LISP conses

required by the proof.]

8 DF(MAX.ASSOC (EQUAL (MAX X (MAX Y Z))(MAX (MAX X Y) Z)))
F~ 9PR (MAX.ASSOC)

------ Prov ing---

3234I3 conses
26.05 seconds
Proved

(The IF structure in the definition of MAX produces a great deal of
propositional case-splitting in the proof of this formula, accounting for the

formidable difference in proof times between MAX.COMMUTE and MAX.ASSOC.)

36

10ODD(NUMBER ABS(X)(IF (LESSP X 0) (MINUS X) X))

[The function ABS is now defined in the usual way.)

11 DF(FORALL.EXISTS (FORALL X (EXISTS Y (LESSEQP X Y))))
12_PR (FORALL.EXISTS)
Want instance for FORALL.EXISTS? Y

Y/ (ABS X)
----- Proving----

305 conses
.25 seconds
?rovedj

(The system asks for an instantiation of the existentially quantified variable

Y. The user types in the instance term (ABS X). The instance is typechecked

by the system and substituted for the variable Y in the Skolem form of the

formula to be proved. The resulting ground formula is then proved by the
underlying decision procedure.)

37

We now give as an example of the use of this system, the proof of

the correspondance between the two most abstract levels in the design of the

SIFT system [Sift:Agard]. This proof aims to demonstrate the validity of the

design of SIFT by

- constructing a very abstract model of SIFT, simple enough to be
evidently what is required by the users of the system. This
description, in conventional mathematical notation, is simple enough
to fit onto one page

- developing a hieirarchy of models of increasing complexity,
culminating in the imperative Pascal program that implements the
SIFT executive

- demonstrating that each of the axioms of each of these models can be
proven as a theorem from the axioms of the model below it, though in
many cases the axioms are identical and the 'proof' is trivial.

We include here the complete definitions of the most ab.tract model of

SIFT, the 10 Model, and of the next model of the SIFT hieirachy, the

Replication Model. Also included are the set of lemmas, and the proofs of the

lemmas, leading upto the proofs of the two most interesting axioms of the 10

Model. Thses two axioms are the axioms stating that SIFT tasks get the

correct results both when they are scheduled to execute and also when they are

a dormant. The proofs are, in effect, the proofs of the validity of majority t

voting to ensure correct operation of SIFT even in the presence of faults.

It is important to note that this example is a demonstration of the use of

E the system ON A REAL APPLICATION. Real applications turn out to be much

bigger than the examples on which theorem provers are normally tested. Not

only must the system accomodate models containing hundreds of axioms and

lemmas but also the individual formulas can become very large. The more

detailed levels of SIFT, where the theorem prover has also been successful,

are yet more complex than the example we give here.

JI

LA-I
L ~m; J. -

38

The 10 Model

(IEF INTEGER.STP) {These commands read into the
(IEF SEQ.STP) system previously defined sets
(IEF SETS.AXIOMS) of axioms)
(IEF PAIROF.STP)

(DTV TYPEI) {Type variable declatations)
(DTV TYPE2)

(DST REALTIME INTEGER) (Subtype declarations)
(DST SUBFRAMETIME INTEGER)

(DST INTERVAL (PAIR.OF SUBFRAMETIME SUBFRAMETIME))
(DSV INTERVAL INTERVALI) {A Varaible declaration)(DD SUBFRAMETIME BEGIN(INTERVALI) (FIRST INTERVALI))

(DD SUBFRAMETIME END(INTERVAL1) (SECOND INTERVALI))
{Declarations of Definitions)

(DD TYPEI VALUE (PAIRI) (FIRST PAIRI))
(DD TYPE2 SOURCE (PAIRI) (SECOND PAIRI))

(DT FUNCTION.TYPE))eclaration of an
unTnterpreted type

(DT SET.uOF (TYPEt))

(DST ITERATION INTEGER)

(DSV ITERATION I)
(DD ITERATION INCR(I) (IPLUS 1 I))

(DT DATAVAL)
(DST DATA (SEQ DATAVAL))
(QUOTE "WAS (DT DATA)")
(DT PROC)
(DT TASK)

(DSV TASK K)

(DSV TASK L)
(DS TASK GLOBAL.EXEC) {Declaration of a constant)
(DS TASK CLOCK)
(DS DATA BOTTOMI (TASK))
(DSV ITERATION J)

(DSV SUBFRAMETIME T)
(DSV SUBFRAMETIME TT)

(DSV INTERVAL II)
(DSV PROC P)

(DSV PROC QQ)
(DSV DATA V)
(DSV (PAIR.OF DATA TASK)

V.T)
(DSV <SET.OF (PAIR.OF DATA TASK))

V. INPUTS)
(DSV (SET.OF (PAIR.OF DATA PROC))

V.BAG)

39

(DS REALTIME EPSILON)
(DS REALTIME LAMBDA)
(DSV SUBFRAMETIME Ti)
(DSV SUBFRAI4ETIME T2)
(DS INTERVAL OF (ITERATION TASK)) (Declaration of Functions)
(DS INTERVAL DW.OF (ITERATION TASK))
(DS INTERVAL DW.FOR.TO.OF (TASK ITERATION TASK))
(DS ITERATION TO.OF (TASK ITERATION TASK))
(DS TASK ERROR.REPORTER (PROC))

(DSV SUBFRAMETIME T.SUB)
(DD SUBFRA14ETIME SUB.INCR (T.SUB) (PLUS T.SUB 1))

(DD SUBFRAMETIME SUB.DECR (T.SUB) (DIFFERENCE T.SUB, 1))

(DS TASK IC.ERROR.REPORTER (PROC))
(DS (SET.OF PROC)

SAFE
(SUBFRAMETIME))

(DS (SET.OF PROC)
SAFE. FOR
(INTERVAL))

(DS (SET.OF PROC)
CONFIGURATION
(DATA))

(DS BOOL TASK.SAFE (TASK ITERATION))
(DS (SET.OF PROC)

POLL.*FOR.OF
(ITERATION TASK))

(DS (SET.OF DATA)
ON
(TASK ITERATION PROC))

(DS DATA ON.IN (TASK ITERATION PROC PROC))
(DS DATA IN (TASK ITERATION PROC)
(DS (SET.OF DATA)

RESULT
(TASK ITERATION))

(DS BOOL IC (TASK))
F(DS BOOL ON.DURING (TASK ITERATION))

(DS, BOOL SSF (TASK TASK))
(DS (SET.OF TASK)

INPUTS
(TASK))

(DS, DATA APPLY (FUNCTION.TYPE (SET.OF (PAIR.OF DATA TASK)
(DS FUNCTION.TYPE FUNCTION (TASK))
(DS REALTIME REAL.TIME (SUBFRAI4ETIME))
(DS BOOL REPORTS (PROC PROC ITERATION TASK))
(DS DATA REPORTVAL (PROC PROC ITERATION TASK))

(DS BOOL ON.DURING (TASK ITERATION))
(DS ITERATION TO.OF (TASK ITERATION TASK))
(DS BOOL TASK.SAFE (TASK ITERATION))
(DS (SET.OF DATA)

40

RESULT
(TASK ITERATION))

(DSV (PAIR .OF DATA PROC)

(TP)lSLC (E.FTPl)

(DS BOOL X~.TASK.SAFE (TASK ITERATION))
(DS BOOL IC.TASK.SAFE (TASK ITERATION))

(DA IO.Al.l (LESSP (SUB.INCR (BEGIN (OF I K)
(END (OF I K)

(DA IO.A1.2 (LESSEQP (END (OF I K))
(BEGIN (OF (INCR I)

K))))

(DA IO.Al.3 (IMPLIES (SSF L K)A
(EQUAL (SUB.INCR (BEGIN (OF I K) A

(END (OF (TO.OF L I K)

(DA IO.A3 (IMPLIES (AND (IC K)
(IC.TASK.SAFE K M)

(EQUAL (CARD (RESULT K I))
1)

(DA IO.A4 (IMPLIES (AND (IC K)
(MEMBER (SOURCE V.T)

(INPUTS K)
(SINGLETON V.INPUTS V.T))

(AND (EQUAL (CARD (INPUTS K)
1)

(IMPLIES (MEMBER L (INPUTS K)
(EQUAL 1

(CARD (POLL.FOR.OF (TO.OF L I K)
L)

(EQUAL (VALUE V.T)
(APPLY (FUNCIION K)

V.INPUTS)))))

(DA IO.A5 (IMPLIES (AND (MEMBER L (INPUTS K)
6- (ON.DURING K I)

(TASK.SAFE K I)
(NOT (ON.DURING L (TO.OF L I K))))

(AND (SINGLETON (RESULT L (TO.OF L I K)I (BOTTOMi L)
(TASK.SAFE L (TO.OF L I K)))))

[(DA IO.A6 (IMPLIES (AND (LESSP T2 ri)
(FORALL I (IMPLIES (LESSEQP

(END (OF I (CLOCK))
Ti)

41

(TASK.SAFE (CLOCK)
I))))

(AND (LESSP (DIFFERENCE (TIMES (DIFFERENCE Ti T2)
(DIFFERENCE 1 (LAMBDA)))

(EPSILON))
(DIFFERENCE (REAL.TIME TI)

(REAL.TIME T2)))
(LESSP (DIFFERENCE (REAL.TIME Ti)

(REAL.TIME T2))
(PLUS (TIMES (DIFFERENCE Ti T2)

(PLUS 1 (LAMBDA)))
(EPSILON))))))

(DS (SET.OF (PAIR.OF DATA TASK)) V.INPUTS.A2 (ITERATION TASK))
(DA IO.A2A

(IFF (AND (MEMBER (SOURCE V.T)
(INPUTS K))

(MEMBER (VALUE V.T)
(RESULT (SOURCE V.T)

(TO.OF (SOURCE V.T)
I K))))

(MEMBER V.T (V.INPUTS.A2 I K))))

(DA IO.A2

(IMPLIES (AND (ON.DURING K I)
(TASK.SAFE K I)
(FORALL L

(IMPLIES (MEMBER L (INPUTS K))

(EQUAL (CARD (RESULT L
(TO.OF L I K)

1M))1))))

(SINGLETON (RESULT K I)

(APPLY (FUNCTION K) (V.INPUTS.A2 I K)))))

)i

I:,

427

The Replication Model

(IEF INTEGER.STP)I IEF SWQ. STP)
ClEF SETS.AXIOMS)
(IEF PAIROF.STP)

(DTV TYPE2)
(DTV TYPE1)
(DST REALTIME INTEGER)

(DST SUBFRAMETIME INTEGER)
(DST INTERVAL (PAIR.OF SUBFRAI4ETIME SUBFRAMETIME))
(DSV INTERVAL INTERVAL1)

(DD SUBFRANETIME BEGINCINTERVAL1) (FIRST INIERVALI))
(DD SUBFRAMETIME END(INTERVAL1) (SECOND INTERVAL1))
(QUOTE (DS SUBFRAJ4ETIME BEGIN(INTERVAL)))

(QUOTE (DS, SUBFRAJIETIME END(INTERVAL)))

(DD TYPE1 VALUE (PAIR1) (FIRST PAIR1)).1
(DD TYPE2 SOURCE (PAIRi) (SECOND PAIR1))

(IEF MAJORITY.STP)

(DT FUNCTION.TYPE)h
(DST ITERATION INTEGER) V

(DT DATAVAL) WL

(DS DATAVAL BOTTOND)
(DSV DATAVAL D1)

(DA BOTTOM. EQUALITY
(EQUAL (BOTTOM D1) (BOTTOMD)))p

CDT TASK) F
(DSV TASK K)
(DSV TASK L)

(DS NAT RESULT.SIZE(TASK))

(DST DATA (SEQ DATAVAL))

(DSV DATA V)p
(DSV DATA V1)
(DS DATA BOTTOM1 (TASK))
(DA DATA.BOTTOM

C(IMPLIESIL (AND
(LESSEQP 1 Y)
(LESSEQP Y (RESULT.SIZE K)))
(EQUAL CSEQ.ELEM (BOTTOMi K) Y) (BOTTOMD))))

(DA DATA.EQUALITY
(1FF
(EQUAL V V1)

43

(FORALL Y
(IMPLIESI, (AND

(EQUAL (SEQ.LENGTH V) (SEQ.LENGTH Vi))
(LESSEQP 1 Y)
(LESSEQP Y (SEQ.LENGTH V))
(EQUAL (SEQ.ELEM V Y) (SEQ.ELEM Vi Y))))

(DT PROC)

(DS TASK GLOBAL.EXEC)
(DS TASK CLOCK)

CDSV ITERATION I)
(DSV ITERATION J)
(DSV ITERATION Ji)
(DSV SUBFRAMETIME T)
(DSV SUBFRAI4ETIME TT)
(DSV INTERVAL II)
(DSV PROC P)
(DSV PROC QQ)
(DSV PROC R)
(DSV (PAIR.OF DATA TASK)

V. T)

(DSV (SET.OF (PAIR.OF DATA TASK))I V. INPUTS)
CDSV (SET.OF (PAIR.OF DATA PROC))

V. BAG)
(DS REALTIME EPSILON)
(DS REALT"ME LAMBDA)
(DSV SL. iAMETIME Ti)
(DSV UBFRAMETIME T2)
(DS INTERVAL OF (ITERATION TASK))
(DS INTERVAL DW.OF (ITERATION TASK))
(DS INTERVAL DW.FOR.TO.OF (TASK ITERATION TASK)
(DS ITERATION TO.OF (TASK ITERATION TASK))
(DS TASK ERROR.REPORTER (PROC))

(DSV SUEFRAMETIME T.SUB)
(DD SUEFRAMETIME SUB.INCR (T.SUB) (PLUS T.SUB M)

I ~(DD :tET. JB.DECR (T.SUB) (DIFFERENCE T.SUB 1)

(DS TASK IC.ERROR.REPORTER (PROC))
(DS (SET.OF PROC) SAFE (SUBFRAMETIME))
(DS (SET.OF PROC)

SAFE.FOR
(INTERVAL))

(DS (SET.OF PRO,..,
F CONFIGURATION
F (DATA))

(DS BOOL TASK.SAFE (TASK ITERATION))
(DS (SET.OF PROC)

POLL.FOR .OF

-- u W 9-

44

(ITERATION TASK))
(DS (SET.OF DATA)

ON
(TASK ITERATION PROC))

(DS DATA ON.IN (TASK ITERATION PROC PROC))
(DS DATA IN TASK ITERATION PROC))F(DS (SET.OF DATA)

RESULT
(TASK ITERATION))

(DS (SET.OF (PAIR.OF DATA TASK)) V.INPUTS.A2 (ITERATION TASK))
(DS DATA APPLY (FUNCTION.TYPE (SET.OF (PAIR.OF DATA TASK)))
(DS FUNCTION.TYPE FUNCTION (TASK))

(DA DATA.SIZE.IS.SEQ.LENGTH
(AND

ME(EQUAL (SEQ.LENGTH (IN K I QQ)) (RESULTSIZE K))
(EQUAL (SEQ.LENGTH (APPLY (FUNCTION K) (V.INPUTS.A2 I K))

(RESULT.SIZE K)
(EQUAL (SEQ.LENGTH (BOTTOM K)) (RESULT.SIZE K))
(EQUAL (SEQLENGTH (ON.IN K I P QQ)) (RESULT.SIZE K)

(DA RESULT.SIZE.GREATER.THAN. 1

(GREATEREQP (RESULT.SIZE K) 1)

(DS BOOL IC (TASK))
(DS BOOL ON.DURING (TASK ITERATION))
(DS BOOL 8SF (TASK TASK))
(DS (SET.OF TASK)

INPUTS
(TASK))

(DS REALTIME REAL.TIME (SUBFRAMETI4E))
(DS BOOL REPORTS (PROC PROC ITERATION rASK))
(DS DATA REPORTVAL (PROC PROC ITERATION TASK))
(DS BOOL ON.DURING (TASK ITERATION))
(DS ITERATION TO.OF (TASK ITERATION TASK))
(DS BOOL TASK.SAFE (TASK ITERATION))
(DS (SET.OF DATA)

RESULT

(TASK ITERATION))

(DSV DATA V.CARD)
(DSV DATA V.CARDl)

(DSV (SET.QOF TYPEl1)
51)

(DSV (SET.OF TYPEl)
S2)

(DSV DATA V2)
(DSV DATA. V3)
(DSV DATA V4)
(DSV (PAIR.OF DATA PROC)

V.P)

M77-T1
45

(DS (SET.OF (PAIR.OF DATAVAL PROC) D.BAG.Ll0 (TASK ITERATION PROC NAT))

(DS BOOL IC.TASK.SAFE (TASK ITERATION))
(DS, BOO. IC.TASK.SAFE (TASK ITERATION))
(DD ITERATION DECR(I

(DIFFERENCE I 1)
(DD ITERATION INCR (I)

V (IPLUS 1 1))

fr(DA RP.Ai.1 (LESSP (SUB.INCR (BEGIN (OF I K)))
(END (OF I K)

(LA RP.A1.2 (LESSEQP (END (OF I K))
(BEGIN (OF (INCR I)

(DA RP.A2 (IMPLIES (AND (MEMBER P (SAFE.FOR (OF I K))
(MEMBER QQ (SAFE.FOR (OF I K)

(SINGLETON (ON K I P)
L (ON.IN K I P QQ))))

(DA RP.A7 (AND (EQUAL (CARD (INPUTS (ERROR.REPORTER PM)

(SINGLETON (INPUTS (IC.ERROR.REPORTER P))
(ERROR.REPORTER P))

(IC (IC.ERROR.REPORTER P',1
(SINGLETON (POLL.FOR.OF I (ERROR.REPORTER P))j

(EQUAL (TO.OF (IC.ERROR.REPORTER P)
I

(ERROR.REPORTER P))))).

(DA RP.A8 (ANJD (MEMBER (IC.ERROR.REPORTER P)
(INPUTS (GLOBAL. EXEC)))

(LESSP (BEGIN (OF I (GLOBAL.EXEC)))
(BEGIN (OF I (IC.ERROR.REPORTER QQ))))

(LESSP (BEGIN (OF I (IC.ERROR.REPORTER QQ))
(BEGIN (OF (INCR I)

(GLOBAL.EXEC)))

(DA RP.A9 (AND (SUBSET (CONFIGURATION (SELECT (RESULT (GLOBAL.EXEC)

(CONFIGURATION (SELECT (RESULT (GLOBAL.EXEC)
(DECR I)))))

(IMPLIES (LESS? (END (OF I (GLOBAL.EXEC)))
(BEGIN (OF J K))

(SUBSET (POLL.FOR.OF J K)

(CONFIGURATION (SELECT (RESULT (GLOBAL.EXEC)

(DA RP.D2.1 (EQUAL (BEGIN (DW.FOR.TO.OF L I K)) 1)))
(IF (MEMBER L (INPUTS K))

(BEGIN (OF (TO.OF L I K)
W)

46

(BEGIN (OF I K)))))

(DA RP.D2.2 (EQUAL (END (DVIFOR.TO.OF L I K))
(END (OF I K))))

(DA RP.D3.1 (NOT (LESSP (BEGIN (DW.FOR.TO.OF L I K))
(BEGIN (DW.OF I K)))))

(DA RP.D3..3 (EQUAL (END (DW.OF I K)
(END (OF I K))))

E (DA RP.D7 (1FF (ON.DURING K I)

(GREAI1ERP (CARD (POLL.FOR.OF I K))I
(DV PIROFDTAALP0CMDP

(DSV(ETF (PAIR.OF DATAVAL PROC)) D. BAG

V (DS (SET.OF (PAIR.OF DATAVAL PROC)) D.BAG.D4 (TASK ITERATION PROC NAT)

(DA RP.DIA
(1FF (MEMBER D.P (D.BAG.D4I K I QQ Y))

(EXISTS P (AND (EQUAL (SEQ.ELEM (ON.IN K I P QQ) Y)
(VALUE D.P))

(EQUAL P (SOURCE D.P))
(MEMBER P (POLL.FOR.OF I K))))))

L (DA RP.D4 (IMPLIES

(AND
(MEMBER QQ (SAFE.FOR (OF I K))
(LESSEQP 1 Y)
(LESSEQP Y (RESULTSIZE K)))

(EQUAL (SEQ.ELEM (IN K I QQ) Y)
(MAJORITY (D.BAG.D4 K I QQ Y)))))

(DS (SET.OF (PAIR.OF DATA TASK)) V.INPUTS.A3 (TASK ITERATION PROC))
(DA RP.A3A

(1FF (MEMBER V.T (V.INPUTS.A3 K I P))
(AND (MEMBER (SOURCE V.T)

(INPUTS K))L (EQUAL (VALUE V.T)
(IN (SOURCE V.T)

(TO.OF (SOURCE V.T)
I K)

P))

(DA RP.A3 (IMPLIES
(MEMBER P (INTERSECTION (POLL.FOR.OF I K)

(SAFE.FOR (DW.OF I K)
(SINGLETON (ON K I P) :

(APPLY (FUN~CTION K) (V.INPUTS.A3 K I P)))))

(DA RP.D1 t
(AND (IMPLIES (AND (MEMBER L (INPUTS K))

47

(NOT (SSF L K)))
(AND (NOT (LESSP (BEGIN (OF I K))

(END (OF (TO.OF L I K)

(LESSP (BEGIN (OF I K))
(END (OF (INCR (TO.OF L I K))

(IMPLIES (AND (MEMBER L (INPUTS K))
(5SF L K))

(DA lO~i(EQUAL (END (OF (TO.OF L I K)

(BGN)O) 1)
(SOF INCR (TO.OF LO I K))

(AD(IMPLIES (AND (MEMBER L (INPUTS K))

(ED(F(TO.OF L I K)
L)))

(LESP(BEGIN (OF I K)))))

(IMLF AN (MEMBER DP(.BGL K(INPUTSY))

(EMBL E D O (ITRETON (LLFO I K)

(SB.N (EGN(SFE. (DIO I)))))))

(DA RP.D9A(F (AKSAEKI
(IFF ME OR (NO (D NDRIN K I))

(TIMESR (INTERSECTION (POLL.FOR.OF I K)

(DA(AE.O RP.AF (IPLE (AN))I))[(EQUAL (CARDLE (ESULT K IP Q Y
(VC.AUE .SAE)))
1))) SUREDP)))

(DA RP.D9B(F (AKSAEKI

(IC.TASK.SAFE K I

-~DWO I~~.- K))))))))

48

(OR (NOT~ (ON.DURING K 1))
(AND (IC K)

(IMPLIES (MEMBER L (INPUTS W)
(LESSP (TIMES 2

(CARD (UNION (POLL.FOR.OF (TO.IOF L I K)
L)

(POLL.FOR.OF I K))))
(TIMES 3

(CARD (INTERSECTION
(SAFEFOR (DW.OF I K))
(UNION (POLL.FOR.OF (TO.OF L I K)

L)
(POLLJ.OR.OF I K))))))))))

(DA RP.A5 (IMPLIES (AND (IC K)
(MEMBER (SOURCE V.T)

(INPUTS K))
(SINGLETON V.INPUTS V.T))

P (AND (EQUAL (CARD (INPUTS K)

(IMPLIES (MEMBER L (INPUTS K))
(EQUAL 1 A(CARD (POLL.FOR.OF (TO.OF L I K)i

(EQUAL (VALUE V.T)
(APPLY (FUNCTION K)

V.INPUTS)))))

(DA RP.A10 (IMPLIES (MEMBER P (SAFE.FOR (DW.OF J K))
(IFF (AND (NOT (IC L)

(MEMBER L (INPUTS K))
(MEMBER QQ (POLL.FOR.OF (TO.OF L J K)

(NOT (EQUAL (ON.IN L (TO.OF L J K)
QQ P)

(IN L (TO.OF L J K)

(REPORTS P QQ (TO.OF L J K)

ODF RP.A11 (IMPLIES (GREATERP Ti T2)
(SUBSET (SAFE Ti)

(SAFE T2))))

(DA RP.A6 (IMPLIES (AND (LESSP T2 Ti)
(FORALL I (IMPLIES (LESSEQP

(END (OF I (CLOCK))
Ti)

(TASK.SAFE (CLOCK)
I)

(AND (LESSP (DIFFERENCE (TIMES (DIFFERENCE Ti T2)

49

(DIFFERENCE 1 (LAMBDA)))
(EPSILON))

(DIFFERENCE (REAL.TIME Ti)
(REAL.TIME T2)))

(LESSP (DIFFERENCE (REAL.TIME Ti)
(REAL.TIME T2))

(PLUS (TIMES (DIFFERENCE Ti T2)
(PLUS 1 (LAMBDA)))

(EPSILON))))

(DA RP.D3.2 (EXISTS L (EQUAL (BEGIN (DW.FORIITO.OF L I K))
(BEGIN (DW.OF I K)))))

(DA RP.D8 (IFF (REPORTS P QQ I K)
(EXISTS J

(AND (LESSEQP (BEGIN (OF I K))
(BEGIN (OF J (ERROR.REPORTER P)

(LESSP (BEGIN (OF (DECR J)
(ERROR.REPORTER PM)

(END (OF (TO.OF L I K)
LM)

(MEMBER (REPORTYAL P QQ I K)
* (RESULT (ERROR.REPORTER P)

(DA RP.DiO (IFF (FORALL T (IMPLIES (AND (LESSEQP (BEGIN II)
T)

(LESS? T (END II)))
(MEMBER P (SAFE T))))

(MEMBER P (SAFE.FOR II)

9 (DA RP.D6
(IF?
(MEMBER V (RESULT K M)
(EXISTS P (AN4D

(MEMBER P (SAFE.FOR (OF I K)
(EQUAL V (IN K I P))))))

5Z)

..

50

The Lemmas
A

(QUOTE "The begining of a Data Window is earlier or at least equal to .'*e
begining of the Execution Window")

(DF RP.L1 (GREATEREQP (BEGIN (OF I K))
(BEGIN'(DW.FOR.TO.OF L I K))))

(QUOTE "If a time is:within the Execution Window, then it must be within

the Data Window")
.,(DF RP.L2 (IMPLIES (AND (LESSEQP (BEGIN (OF I K))

T)
(LESSP T (END (OF IK))))

(AND (LESSEQP (BEGIN (DW.OF I K))
T)

(LESSP T (END (DW.OF I K))))))

(QUOTE "If a processor is Safe for the Data Window, it is Safe for the
Execution Window")

(DF RP.L3 (IMPLIES (MEMBER P (SAFE.FOR (DW.OF I K)))
(MEMBER P (SAFE.FOR (OF I K)))))

['(QUOTE "If a task generates a singleton result value,- then safe processors
will have that value in their In buffer")

(DF RP.L4 (IMPLIES (AND (MEMBER L (INPUTS K))
(EQUAL 1 (CARD (RESULT L (TO.OF L I K))))
(MEMBER P (SAFE.FOR (DW.OF I K))))

(IFF (MEMBER V (RESULT L (TO.OF L I K)))
(EQUAL V (IN L (TO.OF L I K)

(QUOTE "If a task is on a processor that is Safe for its data window,
and if all its input tasks are well behaved, the inputs to the
task will be same as in the 10 Model")

(DF RP.L5 (IMPLIES (AND
(FORALL L

(IMPLIES
(MEMBER L (INPUTS K))
(EQUAL 1 (CARD (RESULT L (TO.OF L I K))))))

(MEMBER P (SAFE.FOR (DW.OF I K))))
(IFF (MEMBER VT (V.INPUTS.A3 K I P))

(MEMBER V.T (V.INPUTS.A2 I K)))))

(QUOTE "As RP.L5")
(DF RP.L6 (IMPLIES

(AND
(FORALL L

(IMPLIES
(MEMBER L (INPUTS K))
(EQUAL 1 (CARD (RESULT L (TO.OF L I K))))))

(MEMBER P (SAFE.FOR (DW.OF I K))))
(EQUAL (V.INPUTS.A2 I K) (V.INPUTS.A3 K I P))))

(QUOTE "If a processor is Safe for the Data Window of a task, it is Safe for

: . .s -, : .C I, . .. ,: J

51

the Execution Windows of each of that task's input tasks. Needed to
prove RP.L4")

(DF RP.L7 (IMPLIES (AND (MEMBER P (SAFE.FOR (DW.OF I K)))
(MEMBER L (INPUTS K)))

(MEMBER P (SAFE.FOR (OF (TO.OF L I K)
_L)))))

(QUOTE "If a processor executes a task, and is Safe for the data wwindow of
that task, and if all the inputs to the task are well behaved, then
the the task output computed by that processor will be the result of
applying the task function to the correct task inputs")

(DF RP.L8 (IMPLIES
(AND
(MEMBER P (INTERSECTION (POLL.FOR.OF I K)

(SAFE.FOR (DW.OF I K))))
(FORALL L

(IMPLIES
(MEMBER L (INPUTS K))
(EQUAL 1 (CARD (RESULT L (TO.OF L I K)))))))

(SINGLETON (ON K I P)
(APPLY (FUNCTION K)

(V.INPUTS.A2 I K)))))

(QUOTE "..and that output value will be the broadcast value received by
all processors that are Safe for the execution window of the task")

(DF RP.L9 (IMPLIES (AND (MEMBER P (INTERSECTION (POLL.FOR.OF I K)
(SAFE.FOR (DW.OF I K))))

(FORALL L
(IMPLIES
(MEMBER L (INPUTS K))

(EQUAL 1 (CARD (RESULT L (TO.OF L I K))))))
(MEMBER QQ (SAFE.FOR (OF I K))))

(EQUAL (ON.IN K I P QQ)
(APPLY (FUNCTION K)

(V.INPUTS.A2 I K)))))

(QUOTE "A result value received from a Safe processor is a member of the set

of all computer result values")
(DF RP.L11 (IMPLIES (AND (MEMBER QQ (SAFE.FOR (OF I K)))

(MEMBER D.P (D.BAG.L1O K I QQ Y)))
(MEMBER D.P (D.BAG.D4 K I QQ Y))))

(DSV (PAIR.OF DATAVAL PROC) D.P.1)
(DS (SET.OF (PAIR.OF DATAVAL PROC)) D.BAG.L12

(TASK ITERATION PROC NAT))

(QUOTE "Definition of D.BAG.L12 to be the set of correct values in the set of
result values to be voted on")

(DA RP.L12A
(IFF
(MEMBER D.P.1 (D.BAG.L12 K I QQ Y))
(AND
(EQUAL

..

52

(SEQ.ELEM (APPLY (FUNCTION K) (V.INPUTS.A2 I K))
Y)

(VALUE D.P.1))
(MEMBER D.P.1 (D.BAG.D4 K I QQ Y)))))

(QUOTE "If a processor is Safe for the execution window of a task, and that
generates a singleton result value, then the result values received
from Safe processors by that processor will be correct values")

(DF RP.L12R (IMPIES (AND (MEMBER QQ (SAFE.FOR (OF I K)))
(MEMBER D.P (D.BAG.L1O K I QQ Y))
(FORALL L

(IMPLIES
(MEMBER L (INPUTS K))
(EQUAL I (CARD (RESULT L (TO.OF L I K)))))

(MEMBER D.P (D.BAG.L12 K I QQ Y))))

(QUOTE "as RP.L12R but as subset")
(DF RP.L13 (IMPLIES

(AND
(MEMBER QQ (SAFE.FOR (OF I K)))
(FORALL L

(IMPLIES
(MEMBER L (INPUTS K))
(EQUAL 1 (CARD (RESULT L (TO.OF L I K)))))))

(SUBSET (D.BAG.L1O K I QQ Y) (D.BAG.L12 K I QQ Y))))

(QUOTE "A time within the execution window of an input task to a task K
lies within the data window of task K. Used to prove RP.L7")

(DF RP.L2A (IMPLIES (AND (LESSEOP (BEGIN (OF (TO.OF L I K)
L))

T)
(LESSP T (END (OF (TO.OF L I K)

L)))
(MEMBER L (INPUTS K)))

(AND (LESSEQP (BEGIN (DW.OF z K))
T)

(LESSP T (END (DW.OF I K))))))

(QUOTE "If a task executes and is Safe, at least one proceesor must have been
Safe for its execution window")

(DF RP.L16 (IMPLIES (AND (ON.DURING K I)
(TASK.SAFE K I))

(GREATERP (CARD (SAFE.FOR (OF I K)))
0)))

(QUOTE "A Primary Lemma. If a task executes and is Safe, and if all its

inputs are well behaved, a Safe processor voting on the broadcast
results will obtain the correct result value for that task")

(DF RP.L14 (IMPLIES (AND (TASK.SAFE K I)
(ON.DURING K I)
(MEMBER QQ (SAFE.FOR (OF I K)))
(FORALL L

(IMPLIES
(MEMBER L (INPUTS K))

,i .-.. .." ~..... -.... ... -: -. -. -.. .-
... --• ... --.; .' ' ' ' J"' ' ":: '::", : i -'," :: .j :c-i- : , . .; : n. : : . : .:

: '!' '=
:" ;/ "': '- ._L. , ,- .,,

53

(EQUAL 1 (CARD (RESULT L (TO.OF L I K))))))
(LESSEQP 1 Y)
(LESSEQP Y (RESULT.SIZE K)))

(EQUAL (SEQ.ELEM (APPLY (FUNCTION K)
(V.INPUTS.A2 I K)) Y)

(MAJORITY (D.BAG.D4 K I QQ Y)))))

(QUOTE "... and will place that result value in its IN buffer")
(DF RP.L15 (IMPLIES (AND (TASK.SAFE K I)

(ON.DURING K I)
(MEMBER QQ (SAFE.FOR (OF I K)))
(FORALL L

(IMPLIES
(MEMBER L (INPUTS K))
(EQUAL 1 (CARD (RESULT L (TO.OF L I K)))))))

(EQUAL (APPLY (FUNCTION K)
(V.INPUTS.A2 I K))

(IN K I QQ))))

(QUOTE "Almost there: If a task executes and is Safe, and all its inputs
are well behaved, its result will be the result of applying its
function to the 2orrect inputs")

(DSV TASK Li)
(DF RP.L17

(IMPLIES (AND (TASK.SAFE K I)
(ON.DURING K I)
(FORALL L

(IMPLIES

(MEMBER L (INPUTS K))
(EQUAL 1 (CARD (RESULT L (TO.OF L I K))))))

(FORALL Li
(IMPLIES
(MEMBER Li (INP"ITS K))
(EQUAL 1 (CARD (RESULT Li (TO.OF L1 I K)))))))

(SINGLETON (RESULT K I)
(APPLY (FUNCTION K)

(V.INPUTS.A2 I K)))))

(QUOTE "The number of versions of a task's result available for voting on is
the number of processors executing that task")

(DF CARD.D.BAG.D4
(EQUAL (CARD (D.BAG.D4 K I QQ Y))

(CARD (POLL.FOR.OF I K))))

(QUOTE "The number of correct versions of a task's result is the number of
Safe processors executing that task")

(DF CARD.D.BAG.L10 (EQUAL (CARD (D.BAG.L10 K I QQ Y))
(CARD (INTERSECTION (POLL.FOR.OF I K)

(SAFE.FOR (DW.OF I K))))))

(DSV TASK L2)
(DF NECESSARY.EVIL

(IMPLIES
(FORALL L

(IMPLIES K) ~~1i
(MEMBER L (INPUTSK)
(EQUAL 1 (CARD (RESULT L (TO.OF L I K))))))

(AND
(FORALL Li

(IMPLIES
(MEMBER Li (INPUTS K))
(EQUAL 1 (CARD (RESULT Li (TO.OF Li I K))))))

(FOftALL L2
(IMPLIES

(MEMBER L2 (INPUTS K))
(EQUAL 1 (CARD (RESULT L2 (TO.OF L2 I K)))))))))

(QUOTE "We now consider tasks that are rnot currently being exc!cuted")

(QUOTE "Tf a task is executed and safe, and has an input task that is not
being executed, a majority of the result values for that not.on task
will be nulls")

(DF RP.L19 (IMPLIES (AND (MEMBER L (INPUTS K))
(ON.DURING K I)
(TASK.SAFE K I)
(NOT (ON.DURING L (TO.OF L I K)))J
(LESSEQP 1 Y)
(LESSEQP Y (RESULT.SIZE L)))

(EQUAL (BOTTOMD)
(MAJORITY (D.BAG.D4 L (TO.OF L I K)

QQ Y)))))

(QUOTE "... and on a safe processor that null value will be placed in the
IN buffer")

(DF RP.L20 (IMPLIES (AND (MEMBER L (INPUTS K))
(ON.DURING K I)
(TASK.SAFE K I)
(NOT (ON.DURING L (TO.OF L I K))
(MEMBER QQ (SAFE.FOR (OF (TO.OF L I K) L)))
(LESSEQP 1 Y)
(LESSEQP Y (RESULT.SIZE L)))

(EQUAL (SEQ.ELEM (BOTTOMi L) Y)
(SEQ.ELEM (IN L (TO.OF L I K) QQ) Y))))

F (QUOTE "as RP.L20")
(DF RP.L21 (IMPLIES (AND (MEMBER L (INPUTS K))

(ON.DURING K I)
(TASK.SAFE K I)
(NOT (ON.DURING L (TO.OF L I K)))
(MEMBER QQ (SAFE.FOR (OF (TO.OF L I K) L))))

(EQUAL (BOTTOMi L)

(IN L (TO.OF L I K) QQ))))

.)

55I

The Proof Commands with the required Instantiationas

(PR (RP.L1)
(RP.A1.1

((K L)
(I (TO.OF L I K))))

(RP.D1)
(RP.D2.1))

(PR (RP.L2)
(RP.A1.1)
(RP.D3.3)
(RP.D3.1)
(RP.L1))

(PR (RP.L2A)
(RP.Al.1)
(RP.D3. 3)
(RP.D3. 1)

(RP.D2.1)

(PR (RP.L3)
t (R P.*L2

((T 'T:3)))
(RP.D1O
((T 'T:3)
(II (DW.OF I K))))

(RP. D10
((II (OF I K))

(T D))))

(PR (RP.L7)
(RP.D1O

((T *T:1)
(II (OF (TO.OF L I K) L))))

(RP.D1O
K ((T #T:l)

(II (DW.OF I K))))
(RP.L2A
((T *T:1))))

(PR (RP.L16)
(CARD. INTERSECTION
((Si (SAFE.FOR (DW.OF I K)))
(S (POLL.FOR.OF I K))))

(CARD. SUBSET
((S2 (SAFE.FOR (OF I K)))
(S1 (SAFE.FOR (DW.OF I K)))))

(SUBSET
((32 (SAFE.FOR (OF I K)))
(X *X:3)
(S1 (SAFE.FOR (DW.OF I K)))))

56

(RP.L3
((P *X:3)))

(RP.D9A)
CR P. D7))

(PR (RP.L4I)
CRP.L7)
(CARD. 2
((X (IN L CTO.OF L I K) P))
(Xi V)
(S (RESULT L CTO.OF L I K)))))

(R P.*D6
M((TO.OF L I K))
(K L)
(V (IN L (TO.OF L I K) P))))

(RP.D6
((I (TO.OF L I K))

(K L))))f

(PR (RP.L5
MC (SOURCE V.T))))

CR P. A3A)

CIO.A2A)I

(RP.L5

(LV. (SORCE1)))))

(PR (RP.L8
MC *L:2)))

(INTERSECT
((S2 (SAFE .FOR KD. I)))
CSl (POLFO.F I K))
CX P):)))

CRP.L6)
(P.3)))

(PR (RP.L9
MC *L:5)))

(INTERSECT
((Si CSAFE.FOR (DW.OF I K)))
CS (POLL.FOR.OF I K))

(CARD.)

((XP CN.N 3IP Q)

CXS (APLY O (FUNCTo K))).NUS.2IK)LS(OL.O.F)

57

CS CON K I P))))
(ftP. L3)
(ftP.* A2)
(RP.L8))

(PR (RP.Lii)
(INTERSECT
((Si (SAFE.FOR (DW.OF I K)))
CS (POLL.FOR.OF I K))
(X OP:2)))

(ftP. Dii
((P D)))

(RP.DAF ((P *P:2))))

(PR (RP.L12t

(('L:3)))

((D.P.i D.P)))
(RP.Lli)
(RP.L9
((P *P:4)))

(RP.Dl1
((P D))))

F (PR (ftP.L13
MC *L:2)))

(SUBSET
((32 (D.BAG.L12 K I QQ Y))
CX 'X:i)
(Si (D.BAG.Ll0 K I QQ Y))))

(RP.Ll2R
(CD.P *X:1))))

MC 'L:i)))
(RP.Li3)
(RP.D9A)
(CARD.D.BAG.D4)
(CARD. D.BAG. L10)
(CARD. SUBSET
((32 (D.BAG.L12 K I QQ Y))
(Si (D.BAG.LiO K I QQ Y))))

(I4AJ. i
C(Tl.V (SEQ.ELE4 (APPLY (FUNCTION K) (VINPUTS.A2 I K)) Y))
(MBAG.1 CDBAG.L12 K I QQ Y))
(14BAG CD.BAG.DI K I QQ Yf))))

(ftP.*L12A
CC.P.1 'Vl.V2:6))))

(PR (RP.Li5
Pr((L *L:i)))

(RP.L14
(C*Y:3)))

58 7
(RP.D

((*Y:3)))I
It ((V (IN K I QQ))

(Y D)
(Vi (APPLY (FUNCTION K) (V.INPUTS.A2 I K))))

(DATA. SIZE. IS.SEQ.LENGTH)
(RESULT.SIZE.GREATER.THAN.1)))

(PR (RP.Ll7
((#L:6)
(11 *L:7)))

(CARD. 3
((V.CARD.3 (APPLY (FUNCTION K) (V.INPUTS.A2 I K)))
(S (RESULT K I)

(RP.L16)
(CARD.4
((S (SAFE.FOR (OF I K)))))

(RP. D6
((P fX:3)
(V (APPLY (FUNCTION K) (V.INPUTS.A2 I K)))))

(RP.D6 .
L ((V 'X:1)

(P D)))

(RP. L15 *
((QQ *X:3)))
(R P. L15
((QQ *P:5))))

(PR (IO.A2
((L *L:2)))

(RP.Ll7)
(NECESSARY. EVIL

ML2 *Ll:1))))

(PR (RP.L18)
(CARD.4
((S (SAFE.FOR (DW.OF I K)))))

(RP. L7
((P (OX.CARD.4 (SAFE.FOR (DW.OF I K))))))

(CARD. INTERSECTION
((S (POLL.FOR.OF I K))
(Si (SAFE.FOR (DW.OF I K)))))

(HP.D9A)
(RP.D7))[(PR (RP.L19)
(M A (D.BAG.D4 L (TO.OF L I K) QQ Y))
(T2.V D1:2)))

(BOTTOM. EQUALITY)
(CARD. D. BAG .D

59

((L)
(R.(I (TO.OF L. I K))))

((S (POLL.FOR.OF (TO.OF L I K) L))))
(R P. D7

((K L)
(I (TO.OF L I K)))))

(PR (RP.L20)IK)Q)

(RP.D49

((K L))

(V(IN (TO.OF L I K)))

(RP.L20

(((IN (TO.OF L I K)) C

(Y D)
(V (BOTTOM1 L))))

(DATA. SIZE. IS. SEQ. LENGTHj
M(L)
(I (TO.OF L I K)))))

(PR (IO.A5)
(RP.D9A

((K L)
(I (TO.OF L I K))))

(RP.L21
((QQ #X:9)))
(R P. L1B)
(RP.L21
((QQ *P:6)))
(RP.D6IK)

((L

(V (BTTOM1L))
(P *X:9))

(RP. D6
((K L)
(I (TO.OF L I K))I (P D)
(V 'X:7)))

(CARD. 3
((VCARD.3 (BOTTOMi L))
(S (RESULT L CTO.OF L I K)))))

CRP.L21

60

((QQ tX:9)))

(CARD. 4
((S (SAFE.FOR (DW.OF I K)))))

(ftP. L7
((P *X:9)))

(CARD. INTERSECTION
((S (POLL.FOR.OF I K))
(Si (SAFEFOR (DW.OF I K)))))

(ftP. D9A)
(fp.))

61

IV

Some Completeness Results for a Class of Inequality Provers

by

W. W. Bledsoe, Robert Neveln and Robert Shostak

Abstract. A modified resolution procedure, RCF, which uses a restricted form of

inequality chaining and variable elimination is proved to be complete, for first

order logic. RCF allows chaining only on terms of the form f(t1 ,..., tn) where

f is an uninstantiated function symbol and n > 1. (E.g., we never chain on

variables.) Other results are given. A prover using RCS+, an extension of RCF,

has been implemented and used to prove several moderately difficult inequality

theorems, not proved earlier by general purpose automatic provers.

J 1

62

1. Introduction

one of the most effective procedures used in our inequality prover.[I] is

that of variable elimination, whereby a variable which in "eligible" (see below)

in a clause, can be eliminated from that clause. For example, the clause

(1 x V x bV c <d

can be replAced by the clause

by elimination of the variable x (assumning that x does not occur in a,b,c, or d) j
Also, the variable x (which does not occur in ab, or c) can be eliminated from

the clause

(2) aitx V b <c

.to produce the clause

(2') b <c

In general, the variable x (which does not occur in ai, bJ, or E) can be

eliminated from the clause

n m
(Va i &xV V x b V E)

II
Ju Jul .A.-. . -

-T

63

to produce

n m
(V VaitbjV E)
i-l J-l

A variable is eligible in a clause if it does not occur within the argmnents

of an uninstantiated function symbol. Thus x is eligible in (1) but not in (3).

(3) a xVx bV f(x) <c,

because it occurs as an argument of the uninstantiated function symbol f. The

term f(x) is called a shieldinR term because it "shields" the variable x,

thereby preventing it from being eligible in (3).

The principal objective of the inequality prover [1] is to remove such shield-

ing terms, by inequality "chaining" and other procedures (see below), so that vari-

ables can be eliminated.

The clause

I

R (a < c V EV E2)

is said to be a chain-resolvent of clauses

C. (a < b V ,

and

C2 (b' < c V E2)

if a is the Mgu of (b,b'). We also allow "self-chaining" whereby Ea is

inferred from (b < b' V E).

U. _ _

64

We will designate by RC ("resolution chaining") a procedure which only uses

chaining (as described above) and factoring. RC was shown to be complete by Slagle [2,

(See also Lenma 4, Section 3.) Unfortunately RC alone is not very powerful as a

prover. In order to strengthen RC, we have added VE (variable elimination, as

descr.oed above), and have imposed restrictions on the chaining process, which

help control proof search tree.
Two such procedures are RCF and RCS, which are described as follows. Both

RCF and RCS use VE, and both restrict chaining as follows: Let

R = (a < c V E1 V E2)o

be the chain resolvent of

C1 = (a <b V E1) and C2= (b' < c V E2)

where a = Mgu(b,b'). We accept R as an RCF chain resolvent if

(1) all of a,b,b',c are ground terms (and hence b=b'), or

(2) b and b'' are both of the form f(t I ,.. . , t) where

f is an uninstantiated function symbol, and n > 1.

And we accept R as an RCS chain resolvent, if additionally, in case (2), either b or-

is non-ground, i.e., either b or b' is a shielding term.

7Other iestrictions on RC include RCM and RC+. RC4 uses "multiple cuts",

where, for example, two clauses

C1 " (a <c V b <c V E 1)

and

C2 - (c < d V c < e V E

-__ _. --- , : : d f i . .

65

are chained, in one step, on both c's in C and both c's in C2 to obtain

(a < dv a< e V b <dv b < e V E1 V E2)

RC+ permits literals of the form

I
a1 +..+a n <b 1 +...+ bm

where the at and bj are traditional terms (with no occurrence of +). Two

such literals are chained by cancelling like terms (after unification). For

example,

f(x) + a < h(x)

and

b < f(c)

are RC+ chained to obtain

b + a < h(c)

By combining these restrictions we obtain the following diagram

FCF+

0RCF - RCS - RCS+

RC

RCM.- RCMF - RCMS RCMS +

r RcdF+

where more restrictive (stronger) procedures are shown to the right.

66

It is the purpose of this paper to prove that RCF, RCF+, RCM, RCMF, and RCMF+

are complete.

It is conjectured that RCS is also complete, as well as RCS+, RC4S, and

RCMS+.

RCS+ is. the procedure described in [1]. But RCF+, which is proved complete

here, is equally as strong as RCS on the examples given in [I]. Since we allow

quantification and uninterpreted function symbols, we can encode all of first order

logic. For example, the atom P(x,y) can be written as

f(x,y) < 0

I

where f is a new uninterpreted function symbol associated with P. Hence our

procedures RC, RCF, etc. are complete for all of first order logic. 4

In each of RCF, RCS, RCM, etc., it is required that variable elimination

(VE) be applied inimediately when a variable becomes eligible in a clause C,

and that C be discarded and replaced by its VE-resolvent.

The reader might prefer to skip to Section 3, page 19, and refer back

to Section 2 as needed.

LA

67

2. Definitions and Logical Basis -

2.1. Axioms for total (linear) order: T

1. x x Anti-reflexive

2. x < y +y x Anti-symetry

3. x < y A y < z x < z Transitivity i

4. y .x A z 4y z 4x

It is convenient (but not necessary) to also use the symbol "<" where

a < b is equivalent to b - a. Then axioms 1-4 can be written

1. x~x

2. x<y a-<y

3. x<yAy< z x< z

4. x <y A y <z x < z

The axioms of I-4 are also called the inequality axi=.

Definition. Let S be the set of clauses corresponding tc the inequality axioms,

S<= (x<x, y<xvx<y, y<xV z<yvx< z, y<xv z<yVx<Z)

2.2. Interpollation Axioms: I

I. Yx 3y (y< X)

2. '0x 3y (X < y)

3. v xy (x <y 3w (x< w<y))

4. Yxyz (x < z A y < z W (x < W < Z A y < w< z))

L~i

68

Using, "t<". these can be expanded to include

SVx 3y (y<,x)

Y 'x .3Jy (x sY)

Y xY (x<y .w (x<w<y))

Y xyz (x<z A y < z w (x <w <zAy<W<z))

vxyz (x < z A y < z - 3,w (A <, <-A yA w,< z))

i ... _i.

More precisely, let I, the interpolation axiom, be the infinite set

1= .(nP. r 1&z m e V: JL
(L is a function on (O,l,...,n-l) x(O,l,...,n-l)

to (S,<)AP is

n m
YX ... x vy Y...ym (A A (xiL iyj)

i-l j-
AyA x L wAwL)))

i-I j=l iJJ

where IN 0,,2,...).

Definition. Let S be the (infinite) set of clauses corresponding to I, i.e., LIJ

S, - fw10 (x) < x, w{(x) < < , x < w°l(x) v x < W;°(x)

x < W1 1 (X,y) V y < x , x < wll(x'y) V y < x

x < w11 (x,Y) v y <x ,x < w{1,(x~y) V y < X11i
w-(XY) < y v y 'x , (x,y) < y V y < x (continued)

69

x < w2 1(x,y,z) V z < x V z < y ,

y < w2 1 (x,y,z) V z < x V z < y ,

w21(x,y,z) < z V z < x V z < y ,

x 1 (<w (xyZ) V z <xv z<y I

y < W!,l(x,y, z) \.' z < x V z < y

Wi (xSy,2)< z V z< X V z < y ,

x < w (x,y,z) V z< x V z < y

More precisely, let

S =(C: _ n fIN m e F k eJ 3 re 3 L

(L is a function on (O, 1,...,n-1)x O,,...,m-1

to (SI<) Ak< nA I <mA
n m

[C- vv (xiijYj) v L yt)
i-1 j-l
n m

V C- (V V ., (xiLijyj) V Y Lk X.))]

The axioms for total order plus the interpolation axioms define the theory
t.

of dense linear order without endpoints [5]. This theory is decidable [6]. How-

ever, the class of formulas we are investigating contains quantification and un-

interpreted function symbols and hence is undecidable (since any formula in first

order logic can be encoded).

V.... • r" ' • -. . -. .. ,, -"'; ,;-..-- ,

70

2.3. Equality Axioms

Definition. If S is a set of clauses then SE is the set of clauses corresponding-

to the equality axioms for S. (See [8].)

2.4. Axioms for +

1. (x+y) +z < x+ (y+ z) Associativity

2. x + (y+ z) < (x +y) + z Associativity

3. x+0 < x Zero

4. x < x+0 Zero

5. x+y.Sy+x Co-nutativity j
6. x+y :S x+z y < z Cancellation

7. x +y Sx * y S 0 Cancellation

8. x+y < x + y < 0 Cancellation

Definition. Let S be the clauses corresponding to the axioms for +,
+

S+= ((x+y)+z<x+(y+z) ,

x+(y+z) < (x+y)+z,

x+y < y+x,

x+z< x+y Vy S z,

x+z<x+y Vy < z

x+O < x

x<x+0,

x < x+y V y S 0

X < X+y v y < 0).

71

2.5. Additional Definitions

Definiin. Let S be a set of inequality clauses.

A term t is said to be isolated in a literal L of S if t occurs in

L not within the arguments of any uninterpreted function symbol. t is isolated

in S if it is isolated in a literal of S.

Thus t is isolated in each of t < a, b < t+c, t < f(t).

A variable x is said to be eligible in a clause C (and in S) if it is

isolated in C and does not occur within the arguments of an uninstantiated

function symbol.

A term t is a shielding term of a clause C (and of S) if t has the form

f(t1 ,. . ., tn)

where f is an uninstantiated function symbol, and t is isolated ard not ground.

For example, x is eligible and f(y) is a shielding term in the clause

x+a <b V f(y) c

t and t' are called half literals of the literals t < t' and t < t'.

Definition. A set S of inequality clauses is said to be:

RC-unsatisf iable if (S US is unsatisfiable, and we write S

Definition. If C is an inequality clause of the form

n m
V (a L'x) V V (xL'bj) V E,
i-l .j-l

Lai - .. -

72

where x is a variable which does not occur in E or one of the a~ or b

and for each ij, Lj is either < or <, and L' is either < or <, then

n nVE1
R V V (aiLijb V

i- l i iI

is called a VE-resolvent of C upon x, where L is < if both Li and L"ijI are <, and Lii is < otherwise.

Note that x is eligible in C.

r Definition. If C is an inequality clause of the form

n m

V (aL'x + a') V V (x +b L" b) + EaJ-
where x is a variable which does not occur in E or one of the ais a. b or

bj, and for each ij L',L' e ,) then

n n
R =VV (a + b Liibi +a V E

is called a VE+ Resclvent of C upon x, where L is < if both L' and

L"are, and- < otherwise.

Definition. If C and C2 are inequality clauses of the form1 2

C1 m (aL' b V E)

C2 (b' V c V E)

where L' and L" are in (<), and b and b' are unifiable, then

R (ALc VE V E 2)a

73

is said to be a chain resolvent of C 1 and C 2 upon b and bV where

a =Mgu(b, b') and L is < if either of L' or V" is <, and < otherwise.

Definition. If C is an inequality clause of the form

C -(b < b- V E)

and a =Mgu(bb), then Ea is said to be self-chain resolvent of C upon

b and b' Ea is also called a chain-resolvent of C.

Definition. If R is a chain resolvent of C and C uo n 'o1 u2 nban ' o

a self-chain resolvent of C upon b and b', and

(1) b and b' are both ground, or

F (2) b and b' both have the form

IA

where f is an uninstantiated function symbol with n > 1,

then R is called an RCF-chain resolvent of C1 and C2
2I

Uon b and b', (or of C upon b and b').

Definition. If R is an RCF-chain resolvent of C Iand C 2 upon b and W,

and either b' or b' is a shielding term then R is called an RCS-cha in

resolvent of C, and C2 up-on b and b', (or of C upon b and b').

Definition. Let C and C be inequality clauses of the form1 2q

n
C1 (a L' Z bi) V E

i-1

FC, Z (b L" c) VE
2 ~1 i2

74

where L', L" e , k e (l,...,n), I e (l,...,m), cy 14gu(b , b), and let

m n
((a+ Z L c+ V.) V v)j=1 2=

J-1 1- 1

where L is < if both L' and L" are, and < otherwise, and let R' be

obtained from R by algebraic simplification whereby like terms on opposite sides

of L are cancelled, (if all terms on one side of L are cancelled that side is

replaced by 0). Then R' is called an RC+ chain resolvent of C1 and C2 upon

the literals bk and b. Also (the self-chaining case) if

n m
C (a L b) V E

ia=.1 jul

where Le (<,<), cMgu(ak , b , then

n m
R= ((a L b3) - E)a

i-l jul

-(algebraically simpl.ified), is called an RC+ chain resolvent of C upon ak and

b ..

RCF+ and RCS+ chain resolvents are defined similarly, where the appropriate

restrictions are maintained on bk, b1 and a.k

We note that, in all of these cases, we do not chain-resolve two clauses unless

at least one term is cancelled. Thus we would not chain-resolve a+b < c and

d+e < f to get a+b+d+e < c+f, unless c-d, c-e, f-a, or f-b. Also

when an intermediate resolvent R is obtained which is simplified to R' by

cancelling like terms, we keep only R' and discard R.

75

Definition. If C is a clause let

LE(C ifevery literal of C has the predicate 1<'

otherwise

Definition. If C1I and C 2 are inequa~lity clauses of the form

n

C I Va Lb)V E
i-I

mI
C2 V (b L" c) V E2

where L.' e V <,<) (b, *bn .b{, .b] is unifiable with Mgu a, then

R (V V aiLi b) V EV E)a
i-1 J- l

is called a multiple cut chain resolvent of C1 and C2 upon b1 ... , bn

,... b' where Lii - LE (Li, Li) It is also called an RQ4-chain resolvent of

1 and C2 Also Self-Chain Resolvents are called multiple cut chain resolvents,

or RQ4-chain resolvents.

RI24, RC2IS, RCKF+, and RCIS+ chain resolvents are defined in a similar way.

Definition. Let C be an inequality clause,

C C' V D, C' -(a 1 < b1 V...V a < b),n > 21 1n n
1 xn

where < is either < or <, and let a be a Mgu of (a, <b1,., an< b
i[with the restriction that

76

(1) if one of the a 's is a variable then no b can be a
i £

variable and a is a Mgu of (bl, ... b) and

(2) if one of the b'a is a variable then no a1 can be a

variable and a is a Mgu of [a1 ,..an)

Then ((a1 < b) V D)a is called an RCS-factor of C, where < LE(C').

Thus (a < f(a) V g(a) S c) is an RCS-factor of (a < f(x) V x < f(a) V

g(x) S c) but not of (a < f(a) V x < f(a) V g(x) S c). That is, for RCS-factors,

we do not allow a variable to unify with a (different) term unless that unification

is forced by the unification of other non-variable terms.

Definition. An RC-factor is the same as an RCS-factor, except conditions (1) and

(2) are removed.

______H

Definition.

FACT(S) *S u WC:J 3ce s(C is an RC-factor of C)).

FACT-S(S) - s u WC: 3 c e S(C' is an RCS-factor of W). 1

Defniin If S is a set of inequality clauses, then

RC(S a R:JC 1 e FACT (S) 3 c2 e FACT (S)

RC (S)S(:3cI

RJ (5) (R is a chain resolvent of C1 and Ce)

RC (S) U S nS

RC~~ (S eR e

C () URnS

ne]R
J

77

Dfinition. If 0 a RC(S) then we write

and say that there is an RC-deducting of C from S (or there is an RC-refu-

tation of S).

Definition. If S is a set of inequality clauses, then

VE(S) - (R: 3 C S (R is a 7E-Resolvent of C))

U S.-(C e S: C has a VE-Resolvent),

VE+(S) is defined similarly,

RCF(S) u WE(S'), where

s' "(R:3 C1 e FACT-S(S) 3 C2 e. FACT-S(S)

(R is a RCF-chain resolventof C1 and C2))

RCS(S) - VE(S'), where

S R - . C1 e FACT-S(S' C e FACT-S(S)

(R is a RCS-chain resolvent of C1 and C2))

etc. for RCF+(S), RcM(S), RCtIF(S), RCMs(S), RCH+(S), and (.MS+(S), except

that FACT(S) is used in the definition of RCM(S) (only).

Note that variable elimination is applied immediately to a new resolvent R,

when it has an eligible variable, and R is discarded and replaced by its VE-

resolvent.

..

...U ,,- ..- , - -, s ., .,-., v , -i :- , . --. , i.: - , -: i : ,...

-- 78

Definition.-

RCF (S) -S

n+ln
RCF (S) -RC1~n(S) U RCF(RCFn(S))

Me2 (S) -U RC#~1(S)
ne 6R

Similarly for RCS*(S), ..,RCKS-f(S).

Definition. If 0] e !CFe(S) we write

and Bay that there is an RCF-deduction of from S. Similarly forI

RCF

LL

RCMS+
IS

79

3. Completeness Results 11
3.1. RCF Completeness .

Lemma I. If S is a set of inequality clauses, oS is ground, S is not

ground, and S has no eligible variables, then S contains a shielding term t

for which ta xa for all isolated variables x in S.

Proof. If S has no isolated variable we arc finished. So let

X be an isolated variable in clause C1 ,

fl(xl) be a shielding term in C1 (since x is

not eligible, by hypothesis) .A

Now if fl(x)a Va for each isolated variable V in S, we are finished. So

suppose that

f (x)a= x2a for some isolated variable in clause C2

f 2 (x 2) is a shielding term in C2 ,

X is an isolated variable in clause Cn n

f (x) is a shielding term in Cn n n

If this were the case then we would have

f l(x)/X2 f2(N 2)/x 3 ' , f N(n /X n+ , '

or

n n-l n-2 .2. n+1

: A f.

I
80

But a has finite depth, so this process has to terminate. It can only terminate

if one of the x is eligible, or if one of the fi(x is such that

fi(xi) # xa

for any isolated variable x in S.

Q.E.D.

Lermma 2. If S is an RC-unsatisfiable set of ground clauses, and c is a

half literal of S (i.e., c < d, d < c, c < d, or d < c is in S, for some d),

then there is an RC-refutation D of S for which any chaining on terms other

than c is done on clauses not containing c (as a half literal).

(That is, all chainings on c are done first, and then only clauses not con-

taining c are retained for the remainder of the refutation.)

Proof. The proof is by induction on the excess literal parameter k(S).*

Case 1. k(S) m -1. Then eS and we are finished.

Case 2. k(S) - 0 , 0 S

In this case the clauses of S are all units and by Lea 2, Appendix I,

S contains a sequence of unit clauses
J,

a <a' a <a ' ... an 1 < a a < a,

The excess literal parametet k(S) is defined as j
k(S) - (1 101) - • I

CeS

That is k(S) is the total number of occurrances of literals minus the number
of clauses in S.

'-- -- '-'?- " =- " " °-" ::' ' " • , . .- : : , • - .< = , . ,-": i~i ' . _ ,"H :...,. ."...-. .'-.,...
....- ,, 'r =

81

where each < is either < or < and at least one of the < is <

If any of the ai are c's, then they can be chained upon first..

Case 3. (Induction Step)

Suppose k(S) n, n > 1, and that for each set S' of ground clauses which

is RC-unsatisfiable and for which k(S) - n, there is an RC-refutation J' of

S' -for which any chaining on a term other than c is done on clauses not con-

taining c (as a half literal).

Then S has at least one non-unit clause C (since k(S) > 0). Let I
C = C' V L

I where C' is a clause and L is a unit clause. Let

So =S -(C),

- S0 u (C') , s2 = u (L)

Then S1 and S2 sub some S and hence are RC-unsatisfiable. Also k(S1) < n,

k(S2) < n, and hence by the induction hypothesis, there are RC-refutations I '4

and D2 of S1 and S2 , respectively, for which any chaining on terms other

than c is done on Clauses not contain c.

Let D be the first part of I in which chaining is done only on c,

and D be the rest of 1 (the last part of D). And let Si be a set of
12 1 1

resolutents produced by D11 which do not contain c (as a half literal), but

such that D produces D from S'

121

' ~ ~~ , .. *,.,. :.T. ,/."5 - ,,. - ,a, .._.,',. ,:,'
i

82

So U (c') S U [L)

1 2

Now build D out of D11 , D2 , and D'2 as follows:

Let J0 be the sme as D1 I except that C' is replaced by C (and some

descendents of C' have the additional literal L), and let SI be produced by0
) O from S (similarly as Si is produced by D1i from S1).

For each clause E in Si , we have by Lemma 1, Appendix I, that either

E or (E V L) is in S . For each such (E V L) in S;, let DE be the

same as D2 except that L is replaced by (E V L) and some descendents of

(E V L) have additional literals from E. Thus D when applied to SO U (E V L)
E0

will produce a clause E' which subsumes E. (By Lemma 1, Appendix I).

L.
By applying such a deducting DE to each such (E V L) in S6, we obtain

from (S; USo) a set S" of clauses which subsumes S. And then we apply D12

to S' to obtain Q ,
1
D is made up of)01 , several of the DE s, and D12

F!

L.

.1
_Ettft.t c.~- .~'-.

83

S U c]

D 01

S; U so
I °o Oi

E 1).E 2 E n

SI'

12
1(D 2

0
Since D01 consists of chainings only on c, since the first part of I

consists of chainings only on c for each i, since the E are done in
'Ei

parallel, and since D12 chains only on clauses not containing c, it follows

that D has the desired properties.

Q.E.D.

A different proof of Lemma 2, due to Ken Kunen, is given in Appendix II.

Lama 3. If S. is an RC-unsatisfiable set of clauses (S may contain more

than one variant of a particular clause), Sa is ground and RC-unsatisfiable,

t is a half literal of S,

- t': t' is a half literal of S and t'a ta)

then there is an RC-deduction D' of a set S' from S for which

(1) each step in 0' is a chaining on a member of W,

(2) S' contains no member of V as a half'literal,

(3) S'o (and therefore S') is RC-unsatisfiable.

J:; ,:b ; - , ,.o.-" -! =.:: ': :-= ," , , ':"'" , "*1',: '"-', " " °i. -° .-.... **'
' '' -

84

Proof. Apply Lemma 2 to So, with ta for c, to obtain an RC-refutation

D" of Sa for which anyr chaining on terms other than ta is done on clauses

not containing ta (as a half literal).

Let S" be the clauses obtained by D" on Sa where only chainings on to

are done, and let S' be those clauses of S" U So not containing ta (as a half

literal). Since any chaining on terms other than ta is done ou clauses not

containing to, it follows that 0" is an RC-refutation of S'.

' is obtained from D" and S' from S; by lifting. Conclusions (1),

(2) and (3) follow immediately.

Lemma 4. (RC-completeness Theorem)

If S is an RC-unsatisfiable set of clauses ther oaere is an RC-deduction

of U from S.

IA
gA

Proof. Let S' be an RC-unsatisfiable set of ground instances of S. Then by

Lema 2 there is an RC-refutation D of S'. Lifting D gives the desired con-

clusion.

Remark. The deductions provided by Lemmas 2 and 4 may employ tautologies, as the
.7!

following example shows.

Example

1. b<a c<a d<a

2. a < b r< c a< d

3. c<b

S
4. b<c

5. d<b

6. b <d

85

Notice that each chaining on S results in a tautology. To show that S

is RC-unsatiefiable, the following deduction (using tautologies) is given.

7. c <a d <a A <c a <d 1,2

8. c<a d <a b <c a <d 1,7

9. c <a d <a b <c b <d 1,8

10. c <b d <a b <c b <d a <c a <d 9,2

11. c <b d <a b <c b <d a <d 9,10

E712. c <d d <a b < c b <d c <d 9,11

13. c < b d < b b < c b < d c < d a < c a < d 12,2

14. .c < b d < b b < c b < d c < d d < c a < d 12,13

15. c <b d <b b <c b <d c <d d <c 12,14

16. c <d 3,6

A.. d 5,4I
18. 015,4,6,3,5,17,16

' The ude of tautologies in RC proofs can be avoided if we use "multiple cuts",

*whereby for example clauses 1 and 2 above produce in one step the clause 15, and

[intermediate clauses 7-14 are not produced or retained. See [91.

Lea 5. If S is an RC-utisatisfiable set of clauses, Sa is ground and

RC-unsatisdiable, C e S, x is a variable,

C- (Vx< a iV j 1b < xV E)

where x does not occur in ai, b~ or E, then

86

n n
S' = S (C) U (V Vbj < ai VE)

is RC-unsatisfiable, and S'a is RC-unsatisfiable. Also the shielding terms of

S' are those of S. (A similar theorem holds when some or all of the '< ' in

C are replaced by '<' and appropriate changes are made in S'.)

Proof. Let

n m
C' = (V V b < a, V E)

So = s ~ (C)

We must show that (S0 U (C'()a ts unsatisfiable. We will show that any model for

(S 0 U(C'))a is a model for Sa= (SoUC))a.

Suppose M is a model for (SoU(C'))a. If M is a model for Ea then

M is a model for Ca and we are through. Otherwise M is a model for

(ba < a a), for some i,j.

If M is already defined on (xa < aia) and (b a < xc), then, since

(b a < aia) is TRUE under M, it follows that either (xa < a.a) or

(b a < xa) is TRUE under M. If M is not defined on these two literals, we

arbitrarily define it to be TRUE on the first and FALSE on the second (or vice versa).

I. In either case M is a model for Ca and is therefore a model for Sc.

Clearly the shielding terms of S' are those of S.

Q.E.D.

Lemma 6. If S is an RC-unsatisfiable set of clarses then there exists a

set S1 of variants of S and a substitution a such that S a is ground and

RC-unsatisfiable.

87

Theorem 1. If S is an RC-unsatisfiable set of clauses then there is an RCF-

refutation of S.

Proof. By Lama 6 there is a set S of variants of S and a substitution a

for which S C7 is ground and RC-unsatisfiable. WLOG assumne that S has no

eligible variable.

Recursively define S2,S . as follows:
If ~~ is grud3at

if Si is ground, halt.

frif Si is not ground, use Lemmna I to select a shielding term t from Si

frwhich at ax for any isolated variable x in S, and let

f t': t'a- ta A t' is a half literal of S)

and use Lemma 3 to obtain an RC-deduction IDiof a set S 1+ from S for which

-each step in Di is a chaining on a member of V, Sf4 contains no member of V,

(as a half literal), and S5'+ and S' ar are RC-unsatisfiable. LetS "'VE(S')

We observe that variable elimination (i.e., the use of Lemma 4) on a set S'

rdoes not increase the number of half literals in S'a. Furthermore, in applying

L ra 3, the half literals of S are a subset of those of S,, and to is
£41

a half' literal of Sabut not S +io* So the use of Lemmsa 3 steadily decreases

the number of half literals in Sia. Therefore the sequencE, Sl'2*' must

terminate in an RC-unsatisfiable ground set S. Let 0Gbe the RCF-refutation

of 5n .

88

Since the shielding term chosen by Leaa 1 is such that

ta xCI

for any variable x, it follows that if ta , t'a, then t and t' have the

form

where f is an uninstantiated function symbol, and therefore each member of V

has this form. And since D chains only on members of V it follows that each
iI

of the steps of 1) produces an RCF-resolvent.

Since variable elimination steps are also RCF-steps it would appear that 1i
i

and D together form a RCF-deduction of S from Si But in the definition

of RCFn (S) we required that variable elimination be applied on a resolvent

immediately when it is produced (if it has an eligible variable), so wa cannot

follow D by D , but must intermingle the two, by reording the VE and RCP
iI

steps. In particular, by [11], there is an RCF-deduction D" of S from
i i+l

S , for each i, i-l,n-l.

And by putting together the deductions

1 2 * n,-1 '

we obtain an RCF-refutation of S.

Q.E.D.

Theorem 2. (RCF Completeness Theorem)

Let

S be a set of inequality clauses,

S be the set of clauses for the i nequality axioms, I
S be the set of clauses for the interpolation axioms,

Io neplto xos

&.. .

89

and suppose (S US US) is unsatiefiable. Then there is an RCF-deduction of

from S.

Iroof. By definition (S U S) is RC-unsatisftable. Thus by Theorem 1 there is

an RCF-deduction D of from (S US). But no clause of SI can be a part of

a (productive) step in J, so D is an RCF-deduction of CI from S.

To see why a clause of S cannot be part of a (productive) step in 1),

recall that SI is the set of clauses

n n 4

(x X,..,x y.y V V V(Y <xi) ii
ym- il Jul

k I l,n A 1 m; n > 0 m > 0, .

together with similar clauses when < and < are interchanged.

Consider the case when n= , m- I.

C1 . (x < w(X,y) V y < X)

C1 . (w(X,y) <yVy< x)

2

(we have dropped the subscript on w). Since the symbol 'w' occurs only in
C 1 and CI and nowhere else in S, it follows that no chaining on w(xy)

with another clause in S is allowed in D, because it would have to match a

variable. And chaining C I with CI would prodiuce the tautology

x<yVy<x

x2

x -.-.--- ,--- <..-Y,.V'.-y--<.-x

90

which again cannot be used in any step of D since matching on variables is forbidden,

Hence CI1 and CI2 are not used in a productive way in D and can be removed from

S US1 . Similarly other members of SZ can be removed.

Q.E.D.

Lemna 7. If

S is a set of inequality and equality clauses,

S< is the set of lAauses for the inequality axioms,

S" is obtained from S by replacing each literal of

the form (a-b) by (a < bAb < a) and reclausing

if necessary,

and S is unsatisfiable, then (S"US<) is RC-unsatisfiable.

o.f The following is a partial sketch of the proof for the ground case. Lifting

gives the general case.

Suppose two clauses

C1 - (a b V E1)

C2 = (a b V E2)

in S are resolved to obtain

R - (El V E2)

if C1 and C have no other symbol then C1 is converted to the two clauses

in S",

C 11 (a < b V E)

C. 2 - (b < a V E1)
• :, . + ~ ~~. . + • : ...-. . + . . .+ - 7 + .,7 +... +

91

and C2 is converted to

Cj (a < b V b < a V E2)

RC-chaining C1 1 and C1 2 with C' gives R.

Theorem 3. Let

S be a set of inequality and equality clauses,

S be the set of clauses for the inequality axioms,

SE be the set of clauses for the equality axioms

for the sets S,

S be the set of clauses for the interpolation axioms,

S' be obtained from S USE by replacing each literal

amb by (a < b A b < a) and reclausing if necessary,

and suppose (S US<USi) is E-unsatisfiable, and S rN$ - 0. Then there is an

RCF-deduction of 0 from S'.

Proof. In this proof we use the following notation: For any set U of inequality

and equality clauses,

U is the set of clauses for the equality axioms for U,

IU' is obtained from U by replacing each literal of the form

- a-b by (a < b A b < a) and reclausing if necessary.

Thus, in the above, S' S" U S11 and we must show that there is an RCF-deduction

of from s" USE

92

We first give an outline of the proof-

S U S U S~ is E-unsatisfiable (Hypothesis of Theorem 3)

r ~ Reference (8]

S US U S USE U SE is unsatisfiable 4
'~Lemae 7

Sit U S U S U Sit U Sit is RC-unsatisfiable

ITheorem 2 (with Sit U S" U Sit for S)
E IE

There is an RCF-deduction ii 0 fro j itj U S . Becus

41See below.
There is an RCF-deduction of 0 from (S" U S")

The last step follows because if 1) is an RCF-deduction of C2 from

.91 st iS"1 then we can omit from D those steps involvingSi Beas
E IE I

sit hasonly clauses of the form

C x< XV X,< x V ..Vy <y'Vy < y
C1 1 1 " m m m m

V w (XI,.. x~ Y1 .* YM) WM5 (X{ .*. * 7 * Y.)

(and similar clauses, see Section 2), and since the symbol "w "does not occur

in S1 U S~, no RCF step can use C1 unless C is chained with itself.
EI

93

But such a chaining only produces a RCF-resolvent

x. < X, v ... v ym <
!

V w (x1 . . . , YM) < wrz(x 1 Ym)

which can again only be used against members of RC?*(S'jE). So no interaction

with S" U S" is possible.

3.2. RCF+ Completeness

Lemma 9 (Ground unit R + Completeness). If S is an RC+ unsatisfiable set

of grrrnnd unit clauses, then thre is an RC+ deduction of 0 from S.

This follows essentially from a consistency criterion used in linear pro-

graming. See (10]. Also see Lenmma 3, Appendix I.

?J

_ _ _ -~- . ---........ .

i. ~ '. .

94

Lemma 10. If S is an RC+ unsatisfiable set of ground unit clauses, and c

is an isolated term of S, then there is an RC+ refutarion D oZ S for.which

any chaining on terms other than c is done on clauses not containing c (as an

I.solated term).

Proof, Use Lema 9.

Lemma 11. (Like Lemma 2) If S is an RC+ unsatisfiable set of ground

clauses, and c is an isolated term of S, then there is an RC+ refutation D

of S for which any chaining on terms other than c is done on clauses not

containing c (as an isolated term).

Proof. The proof is by induction on the excess literal parameter k(S).

Case 1. k(S) - -1. Then D e s.

Case 2. k(S) 0, ls. -

In this case the clauses of S are ground unit clauses, and the desired

result follows from Lena 10.

Case 3. (Induction Step) The proof of this case follows exactly as the proof of

Case 3 in Lemma 2, except the expression "half literal" is replaced by "isolated

term".

*Recall that a term is isolated if it occurs not within the arguments of any

uninstantiated function symbol. E.g., t < a, t+a < b, a+t+b < c, etc.
iF"

95

Lana 12. (Like Lema 3) If S is an RC+ unsatisfiable set of clauses,

Sa is ground and RC+ unsatisfiable, t is an isolated term of S,

W * Ct': t is an isolated term of S and t'a= ta)

then there is an RC+ deduction D' of a set S' from S for which

(1) each step in D' is a chaining on a member of W,

(2) S' contains no member of V (as an isolated term),

(3) S'a (and therefore S) is RC+ unsatisfiable.

Proof. Similar to that of Lema 3.

Lemma 13. (Like Lema 5) If S is an RC+ unsatisfLable set of clauses,

C a S, x is an eligible variable in C, and R is a VE+ Resolvent of C upon

x, then S -(C) U (R) is RC+ unsatisfiable.

Proof. The proof is similar to that of Lemma 5.

.Theorem 4. If S is an RC+ unsatisfiable set of clauses then there is an RCF+

refutation of S.

Proof. Very much like that of Theorem 1.

Ii

96

APPENDIX Theorem Prover Listing

The following is an excerpt from the Interlisp implementation of
the experimental theorem prover developed during the second year of
the projeot. The excerpt exhibits the main prooedures in part of the
theorem prover that reduces propositional structure.

I:

L: (PROVE

(LAMBDA (FORM)
(NEW.CONTEXT (AND.SIMP (LIST FORM)))))

(NEW.CONTEXT
(NLAMBDA (X)
(PROG ((SIGNATURE.ALIST SIGNATURE.ALIST)

(FIND.PTR.ALIST FIND.PTR.ALIST)
(USE.ALIST USE.ALIST)
(INEQLIST (APPEND INEQLIST))
(IF.ALIST IF.ALIST))

(RETURN (EVAL X)))))

(AND.SIMP
(LAMBDA (STACK SUBGOALS FAST.FLG) (* edited:

"19-Feb-81 21:02")
(PROG ((DEFER.POT (CONS NIL (AND SUBGOALS (APPEND SUBGOALS))))

EXP SINGLE ADD.ELEM NOT.EXP)
TOP (while STACK

do
((SETQ EXP (CAR STACK))
(COND

((ATOM EXP)
(SELECTQ EXP

(TRUE (SETQ STACK (CDR STAIK)))
(FALSE (RETFROM (QUOTE NEW.CONTEXT)

(QUOTE D&LSE)))
(PROG2 (OR (ADD.EQ (LIST (QUOTE EQUAL)

(QUOTE TRUE)
EXP))

(SETQ SINGLE
(COND

(SINGLE (QUOTE FALSE))
(T EXP))))

(SETQ STACK (CDR STACK)))))
(T

(SELECTQ
(CAR EXP)
(NOT

(SETQ NOT.EXP (CADR EXP))
(COND

((ATOM NOT.EXP)
(SELEZTQ
NOT.EXP
(TRUE (RETFROM (QUOTE NEW.CONTEXT)

-

-

97

(QUOTE FALSE))
(FALSE (SETQ STACK (CDR STACK))
(PROG2 (OR (ADD.EQ (LIST (QUOTE EQUAL)

(QUOTE FALSE)
NOT. EXP))

(SETQ SINGLE
(,.OND
(SINGLE (QUOTE FALSE))
(T EX)

(SETQ STACK (CDR STACK))
(T

(SELECTQ
(CAR NOT.EXP)
(NOT (SETQ STACK (CONS (CADR NOT.EXP)

(CDR STACK)
(AND

(COND
((CDR NOT.EXP)
(RPLACD
DEFER. POT
(CONS

(CONS
(QUOTE OR)
(for ARG in (CDR NOT.EXP)

collect
(LIST (QUOTE NOT)

ARG))
(CDR DEFER.POT)))

(SETQ STACK (CDR STACK))
(T (RETFROM (QUOTE NEW.CONTEXT)

(Oh(QUOTE FALSE)))))

(COND S

((CDR NOT.EXP)
(SETQ STACK

(NCONC (for ARG
in (CDR NOT.EXP)
collect
(LIST (QUOTE NOT)

ARG))
(CDR STACK)

CT (SETQ STACK (CDR STACK))
(IMPLIES

(SETQ STACK
(CONS (CADR HOT.EXP)

(CONS (LIST (QUOTE NOT)
(CADDR NOT.EXP))

(CDR STACK))

(IF
(RPLACD
DEFER. POT
(CONS (LIST (QUOTE IF)

(CADR NOT.EXP)
(LIST (QUOTE NOT)

98

(CADDR NOT.EXP))
(LIST (QUOTE NOT)

(CADDDR NOT.EXP))
(CDR DEFER.POT))

(SETQ STACK (CDR STACK))
(IF.OBJ (SETQ IF.ALIST

(CONS (CADR NOT.EXP)
IF .ALIST))

(SETQ STACK
(CONS (LIST (QUOTE N~OT)

(CADDR NOT.EXP))
(CDR STACK)

(1FF
(RPLACD

DEFER. POTr (CONS
(LIST (QUOTE OR)

(LIST (QUOTE AND)
(CADR NOT.EXP)
(LIST (QUOTE NOT)

(CADDR NOT.EXP))
(LIST (QUOTE AND)

[(CADDR NOT.EXP)
k (LIST (QUOTE NOT)

(CADR NOT.EXP)
(CDR DEFER.POT))

(SETQ STACK (CDR STACK))
(SELECTQ tSETQ ADD.ELEN (ADD.ELEM.REL

NOT.EXP T))
(NIL (SETQ STACK (CDR STACK))

(SETQ SINGLE
(COND

(SINGLE (QUOTE FALSE))
(T EXP)

(T (SETQ STACK (CDR STACK))
(SETQ STACK (CONS ADD.ELEM

(CDR STACK))))

(AND (SETQ STACK (APPEND (CDR EXP)
(CDR STACK)

(OR (COND
((CDR EXP)

(RPLAC.) DEFER.POT (CCNS EXP (CDR DEFER.POT)

(T (RETFROH (QUOTE NEW.CONTEXT)
(QUOTE FALSE)

(SETQ STACK (CDR STACK))
(IMPLIES (RPLACD

DEFER. POT
(CONS (LIST (QUOTE OR)

(LIST (QUOTE NOT)
(CADR EXP))

(CADDR EXP))
(CDR DEFER.POT))

(IFOB(SETQFASTK(D STACK))

(IF (PADDFRPT(CONS EXP (CDR DEFER.POT))
(SET STCK CDRSTACK)

(IF.BJ (ETQIF.A13T(CONS (CADR EDP)
IF .ALIST))

(SETQ STACK (CONS (CADDR LXP)
(CDR STACK)

(1FF (SETQ STACK
(CON3 (LIST (QUOTE AND)

(LIST (QUOTE IMPLIES)
(CADR EXP)
(CADDR EXP))

(LIST (QUOTE IMPLIES)
(CADDR EXP)
(CADR LX?))

(CDR STACK)
kk (SELECTQ (SETQ ADD.ELEN (ADD.ELEM.REL KIP))

t (NIL (SETQ SINGLE (CORD
(SINGLE (QUOTE FALSE))
(T LXP)))j

(SETQ STACK (CDR STACK))
(T (SETQ STACK (CDR STACK))
(SETQ STACK (CONS ADtD.ELEH (CDR STACK)))))

(COND
((CDR DEFER.POT)

(FAST. ITERATE DEFER.POT)
(COND

(STACK (GO TOP))
(FAST.FLG)
((CDR DEFER. POT)

(SLOW. ITERATE DEFER. POT)
(COND

(STACK (GO TOP)) 4
((CDDR DEFER.POT)

(SPLIT.FEECURSE (CDR DEFER.POT))J
(RPLACD DEFER.POT)
(AND STACK (GO TOP))))))

(RETURN (COND
(SINGLE (CONDF ((OR (EQ SINGLE (QUOTE FALSE))

(CDR DEFER.POT))
NIL)

(T SINGLE))
((CDR DEFER.POT)

(COND
((CDDR DEFER.POT)
NIL)

(T (CADR DEFER.POT)
(T (QUOTE TRUE))))

(FAST.*ITERATE
(LAMBDA (DEFER.POT.PTR)

(while (CDR DEFER.POT.PTR) bind Sfl4P

100

do (SELECTQ (SETQ SIMP (SELECTQ (CAADR DEFER.PQT.PTR)
(OR (OR.SIMP (CADR DEFER.PQT.PTR)

NIL T))
(IF (IF.SIMP (CADR DEFER.POT.PTR)

NIL))
(TRUE (RPLACD DEFER.POT.PTR (CDDR DEFER.POT.PTR)))
(FALSE (RETFRON (QUOTE NEW.CONTEXT)

(QUOTE FALSE))
(NIL (SETQ DEFER.POT.PTR (CDR DEFER.POT.PTR)))
(PROGN (SETQ STACK (CONS SIMP STACK))

(RPLACD DEFER.POT.PTR (CDDR DEFER.POT.PTR)))))

(FAST.*PROVE
(LAMBDA (FORM)

F(NEW.CONTEXT (AND.SIMP (LIST FORM)
NIL T)

(OR .SIMP
(LAMBDA (STACK SUBGOALS FAST.FLG)

(PROG (SIMP)
(SETQ STACK (for X in (CDR STACK) collect

(LIST (QUOTE NOT)

SUBGOALS
FAST.FLG)))4

(TRUE (QUOTE FALSE))
(FALSE (QUOTE TRUE))
(NIL NIL)
(LIST (QUOTE NOT)

SIMP))))

(SLOW. ITERATE

(LAMBDA (DEFER. POT.PTR)
(while (CDR DEFER.POT.PTR) bind SIMP

do
(SELECTQ

(SETQ SIMP
(SELECTQ (CAADR DEFER.POT.PTR)

(OR (OR.SIMP (CADR DEFEf.POT.PTR)))
(IF (OR.SIMP (CAR (RPLACA (CDR DEFER.POT.PTR)

(CONVERT. IF.TO.OR
(CADR DEFER. POT. PTR))))

NIL))
(TRUE (RPLACD DEFER.POT.PTR (CDDR DEFER.POT.PTR)))
(FALSE (RETFROM (QUOTE NEW.CONTEXT)

(QUOTE FALSE)))
(NIL (SETQ DEFER.POT.PTR (CDR DEFER.POT.PTR)))
(PROGN (SETQ STACK (CONS SIMP STACK))

(RPLACD DEFER.POT.PTR (CDDR DEFER.POT.PTR)))))))

101

(SPLIT.RECURSE
(LAMBDA (GOALS)

(PROG (SINGLE 3IMP)
(RETURN (SELECTQ (for DISJUNCT In (CDAR GOALS)

do (SELECTQ (SETQ S1MP
(NEW. CONTEXT
(AND.3IMP (LIST DISJUNCT)

(CDR GOALS))))
(NIL (RETURN (QUOTE NO.LUCK)))

(TALSE)(ETR (QUOTE TRUE)))

(COND
(SINGLE

(RETURN (QUOTE NO.LUCK)))
(T (3ETQ SINGLE 3IMP)))))

(NO.LUCK (RETFROM (QUOTE NEW.CONTEXT)))
(TRUE)
(COND
(SINGLE (SETQ STACK (LIST SINGLE)))
(T (RETFROM (QUOTE NEW.CONTEXT)

r (QUOTE FALSE)))))))))

